
Profiling and Reducing Micro-Architecture
Bottlenecks at the Hardware Level

Francis B. Moreira, Marco A. Z. Alves,
Matthias Diener, Philippe O. A. Navaux

Informatics Institute, Federal University of Rio Grande do Sul

Porto Alegre, Brazil

E-mail: {fbmoreira, mazalves, mdiener, navaux}@inf.ufrgs.br

Israel Koren
Dept. of Electrical and Computer Engineering

University of Massachusetts

Amherst, United States

E-mail: koren@ecs.umass.edu

Abstract—Most mechanisms in current superscalar processors
use instruction granularity information for speculation, such
as branch predictors or prefetchers. However, many of these
characteristics can be obtained at the basic block level, increasing
the amount of code that can be covered while requiring less
space to store the data. Furthermore, the code can be profiled
more accurately and provide a higher variety of information by
analyzing different instruction types inside a block. Because of
these advantages, block-level analysis can offer more opportuni-
ties for mechanisms that use this information. For example, it
is possible to integrate information about branch prediction and
memory accesses to provide precise information for speculative
mechanisms, increasing accuracy and performance.

We propose a Block-Level Architecture Profiler (BLAP),
an online mechanism that profiles bottlenecks at the micro-
architectural level, such as delinquent memory loads, hard-to-
predict branches and contention for functional units. BLAP works
at the basic block level, providing information that can be used
to reduce the impact of these bottlenecks. A prefetch dropping
mechanism and a memory controller policy were developed to
use the profiled information provided by BLAP. Together, these
mechanisms are able to improve performance by up to 17.39%
(3.90% on average). Our technique showed average gains of
13.14% when evaluated under high memory pressure due to
highly aggressive prefetch.

I. INTRODUCTION

Characterization of basic blocks is an important, recurring
technique, used for automatic optimization of several kinds.
Software tools such as Vtune [1] allow manual analysis to de-
tect performance improvement opportunities, such as rewriting
code to avoid high cache miss rates or high branch mispredic-
tion rates for specific basic blocks, known as hotspots. The
basic block granularity is especially useful [2] as basic blocks
represent portions of code that always end with conditional
or unconditional branch instructions. A program’s execution
path is therefore defined by basic block execution sequences,
enabling a program phase characterization and dynamic op-
timization. A recent example is the work of Kambadur et
al. [3], which uses basic blocks to characterize the thread-level
parallelism of an application in its different phases.

General-purpose processor designs [4] only collect in-
formation at the instruction level. Although several research
papers used basic block analysis, most did so using a software
approach, even for hardware adaptations [5], [6]. One of the
few techniques that actually performed basic block analysis at
the hardware level was the rePlay framework [7]. It analyzes

the code to perform on-line code optimization which is stored
in a trace cache for future use, although no bottleneck profiling
is performed. Block profiling is usually done in software due
to the high complexity of detailed profiling and the analysis
required. Nevertheless, profiling in hardware is interesting as it
can leverage current hardware state information to efficiently
generate relevant information of a program’s execution, requir-
ing no pre-analysis or source code modification.

In this paper, we introduce our Block-Level Architecture
Profiler (BLAP). BLAP characterizes basic blocks according
to the most relevant delays occurring per block, thus allowing
improvement of a block’s future executions. BLAP has several
advantages over other mechanisms. It adapts to program phase
changes, as it dynamically keeps track of basic blocks. It
requires less storage than instruction-granularity mechanisms,
as we aggregate the behavior per block. We are able to
use the Branch Target Buffer (BTB) to efficiently store this
information, as it retains the initial address of each block.
BLAP is capable of detecting different types of performance-
related issues within a block, thus being able to provide
information to a wide range of mechanisms.

In order to show the potential of BLAP, we explore
the use of its profiling information to design an improved
memory controller. Compared with the instruction-granularity
information used by Ghose et al. [8] and Lee et al. [9],
our mechanism achieves better performance with a scalable
hardware overhead. Moreover, BLAP’s basic implementation
can be extended to provide detailed information regarding a
wide range of bottlenecks at low hardware costs. To the best of
our knowledge, no previous research has profiled basic blocks
in hardware. Moreover, we present an integration between
BLAP and other mechanisms, in order to show the usefulness
of the profiled information.

The main contributions of this paper are the following:
Characterization Mechanism: We propose BLAP, an effi-
cient detection mechanism capable of characterizing applica-
tions at the basic block level during their execution.
Low Overhead Profile: Our mechanism requires negligible
storage to keep information about the relevant characteristics
for each basic block. Such a mechanism can be implemented
by extending the BTB with a few extra bits per entry.
Performance Improvement: We integrated BLAP with pre-
vious mechanisms that improve memory performance, by
adapting them to use information provided by BLAP. We also
combine BLAP with a new policy to drop prefetches.

2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing

1550-6533/14 $31.00 © 2014 IEEE

DOI 10.1109/SBAC-PAD.2014.19

222

The main objective of this work is to propose and study
a hardware mechanism that is capable of detecting the blocks
which build a program and characterize their behavior. Such
characterizations can make it possible to improve the processor
performance through its usage by other mechanisms, such as
prefetchers or priority policies.

II. MOTIVATION

In this section, we will explore the relationship between
basic blocks and processor performance. We use here a relaxed
definition of a basic block [2], [10]. A basic block is a portion
of code with a single point of entry and a single point of exit.
Thus, every basic block ends with a branch instruction, either a
conditional or unconditional branch. This enables mechanisms
based on basic blocks to keep up with the program phase
automatically, as a program’s phase is characterized by the
blocks being used [6]. Our definition allows for multiple entry
points, as it is not possible to efficiently detect the beginning
of a block which was not targeted by a branch.

A design issue to be considered when extending the BTB is
that it only records information for blocks after taken branches.
Given that the behavior to be exploited is usually repetitive,
this is normally not a problem, as the repetition of blocks
begins after taken branches. Another issue is that we cannot
recognize branch targets unless their corresponding branch
occurred. This breaks the definition of a basic block, as we
will likely record blocks with overlapping information. These
blocks will aggregate behavior from all the instructions in the
few, smaller real basic blocks inside them, and thus will not be
characterized separately. However the smaller basic blocks will
be correctly characterized once they are targeted by a branch,
thus obtaining their correct starting address. As in most cases
smaller blocks represent conditions inside loops, they will be
executed enough times to be characterized. If they do not, then
they are likely not relevant.

To demonstrate the behavior that can be observed for our
relaxed block definition and its correlation with performance,
we statistically correlated execution events (such as branch
mispredictions) to performance, using the Pearson Moment-
Product Correlation Coefficient. The resulting coefficient lies
between −1 and 1. The higher the absolute value the stronger
is the correlation between the parameters. If the coefficient is
negative, the parameters are inversely correlated (e.g. the value
of the parameters influence each other, but when one increases,
the other decreases). If it is positive, they are correlated, both
values increase or decrease together.

The details of the configuration and benchmarks used can
be found in Section V. To calculate the correlation, we gen-
erated a trace of the execution. This trace contained the most
important processor events relevant for execution performance:
L1 data cache misses, L2 cache misses, Last-Level Cache
(LLC) misses, branch mispredictions, and number of floating
point arithmetic-logic instructions and division instructions.
Whenever a basic block finished executing, we recorded the
number of instructions the block contained, and how many
cycles it took to execute, in order to measure its performance.
We then recorded how many of the events happened during
the execution of that block. For each parallel application from
the NAS-NPB and SPEC-OMP2001 suites, each correlation

TABLE I. PEARSON MOMENT-PRODUCT CORRELATION COEFFICIENTS

BETWEEN EVENTS WITHIN A BLOCK AND THE INSTRUCTIONS PER CYCLE.

Benchmark L1D
Misses

L2
Misses

LLC
Misses

Branch
Mispred.

FP ALU
Inst.

FP DIV
Inst.

N
A

S
-N

P
B

BT −0.28 −0.34 −0.39−0.39−0.39 −0.01 −0.14 −0.15
CG −0.63−0.63−0.63 −0.44 −0.48 0.00 0.13 0.13
FT −0.51−0.51−0.51 −0.31 −0.25 −0.05 0.04 0.05
IS −0.18−0.18−0.18 −0.16 −0.16 −0.01 −0.00 0.00
LU 0.04 0.02 −0.14−0.14−0.14 0.01 0.11 0.10
MG −0.34−0.34−0.34 −0.28 −0.28 −0.02 0.06 −0.23
SP −0.40−0.40−0.40 −0.36 −0.31 −0.05 −0.27 −0.34

S
P
E

C
-O

M
P

2
0
0
1 Applu −0.45−0.45−0.45 −0.45 −0.39 −0.01 0.26 0.00

Apsi −0.13 −0.14 −0.14 0.01 −0.27−0.27−0.27 −0.26
Fma3d −0.27 −0.33−0.33−0.33 −0.33−0.33−0.33 −0.03 −0.00 0.12
Galgel −0.18 −0.21−0.21−0.21 −0.08 −0.01 0.21 0.25
Mgrid −0.30 −0.29 −0.28 −0.01 −0.49−0.49−0.49 −0.45
Swim −0.69−0.69−0.69 −0.60 −0.59 −0.01 −0.40 −0.32
Wupwise −0.58−0.58−0.58 −0.50 −0.47 −0.00 0.01 −0.06

coefficient was calculated considering blocks from all the
threads together.

The correlation results are shown in Table I. The highest
correlation coefficients for each benchmark are marked in
bold. Looking at the cache misses correlation coefficients,
we can observe a diminishing correlation as we go from
smaller and faster to slower and larger caches. Although a
miss in the LLC means a main memory access, which is
likely to stall the processor, the number of accesses the LLC
receives is small, because most accesses are serviced by higher
level caches. Therefore, although a single LLC miss has a
considerable impact on the final performance, it happens much
less frequently than L1 and L2 misses, such that it does
not correlate highly with the performance differences between
blocks.

Although a branch misprediction in a 15-stage pipeline
results a large number of stall cycles, the correlation coefficient
of the Branch Misprediction is consistently lower than the
other coefficients. This low value of the correlation coefficient
is due to the low branch misprediction rate of less than 1% in
the benchmarks. Floating-point instructions per block correlate
well on a few benchmarks. We can observe that for Apsi
and Mgrid, the number of floating-point ALU instructions per
block has the highest correlation with degraded performance.

Following this analysis which shows that L1D misses have
the highest correlation with processor performance, we seek to
improve the memory access bottleneck. However, obtaining de-
tailed hardware statistics per block during execution is a com-
plex matter. Attempting to aggregate behavior and singularly
identify blocks using statistics has three challenges. First, the
statistic must show a direct impact on the performance. While
cache misses are intuitively relevant [5], current architectures
are usually tolerant to L1D misses due to high Instruction
Level Parallelism (ILP), which provides enough computation
to overlap the cache access latency. That is, for most cases,
L1D misses do not stall the processor.

Second, different hardware events cannot be directly com-
pared. When a L1D miss occurs, we know that it will take
at least L1D access time plus L2 access time for a request
to be serviced, but we do not know the state of the Miss-
Status Handling Registers (MSHR) of each cache, or even if
the cache line will be serviced in L2. Even such a large latency
could be hidden in the presence of a branch misprediction.
If we want to find what was the most relevant bottleneck

223

in a block, we cannot compare such a value directly to the
delay generated by, for example, a floating-point division unit,
as we do not know whether there is any instruction that
depends on the division result, or if it is actually going to
stall the commit stage. Third, hardware counters cannot be
used directly to profile the block. As blocks of instructions
are committed, we do not know which statistics belong to
which block. As an example, if instructions from a block
have executed and are ready to commit, we gathered all its
statistics, and once the last instruction from the block commits,
we should reset the counters to gather statistics for the next
block. However, instructions from the next block might be
altering these statistics, preventing us from accurately profiling
a block.

To overcome these challenges, we exploit the commit stage.
Instructions only cause bottlenecks or delay the pipeline if
eventually this leads to the commit stage being blocked. So, in
order to compare instruction delays, we only look at how many
cycles each instruction stalled the commit stage. This approach
will obtain information that directly impacts performance (first
issue), since we are focusing on the commit stage stalls. We
can directly compare commit stalls between instructions, since
they are measured in terms of cycles (second issue). Finally, as
we do not use hardware counters, the statistics are not skewed
(third issue).

In summary, a potential hardware mechanism that identifies
the bottlenecks using the commit stage stalls has new relevant
applications and requirements. It must be able to meaningfully
characterize blocks, requiring small logic overhead. This is
possible by recording the number of stalls of the instruction at
the head of the Reorder Buffer (ROB), and detecting branch
instructions to observe block boundaries. It is also required
to efficiently store this profile. Therefore, the information
for each block should be kept to a minimum. Finally, the
mechanism should be able to provide varied characterization,
so multiple mechanisms can use the profile provided. Based
on the correlation results, we chose to record the following
characteristics: None to denote that the block has negligible
stalls, Brch to denote hard-to-predict branches, Mem to denote
commit stalls due to loads and FP to denote commit stalls
due to any floating-point unit. Although the correlation for
branches has shown low values, we keep this option for
future extensions as we observed high correlation coefficients
for sequential benchmarks. Correlation values for sequential
benchmarks are omitted for brevity.

III. RELATED WORK

Sherwood et al. [11] is the precursor to SimPoints [12] and
other works, such as Pinpoints [13]. The authors characterize
the behavior of entire programs based on the analysis of
basic block execution distribution. The concept of a Basic
Block Vector (BBV) is first introduced to characterize a
program. A basic block vector contains execution counts for
all basic blocks, normalized by the total amount of executions.
Therefore, the vector gives the execution frequency of each
basic block in relation to the entire program. In this way,
the authors are able to compare the behavior for executions
of different instruction counts and for different inputs. Next,
a BBV comparison is performed, by treating each BBV as
a fingerprint of the program slice observed. To generate this

difference, the BBVs are subtracted from each other, and the
differences are summed up.

With this comparison, the authors show a variety of features
of their implementation. They are able to identify the different
phases of a program, such as the initialization phase of a
program, due to the considerable difference between the BBV
obtained for the first 100 million instructions and the BBV
of the entire program. With the BBV of the entire program,
they are also able to identify or create BBVs that have a
near-identical fingerprint, but with a much smaller number of
instructions. They show that the behavior of selected program
slices with near-identical BBV are similar, with statistics
pertaining to cache misses, branch mispredictions and overall
type of instructions executed differing at most by 3%. This
was further improved in SimPoints, which can use the Pin
instrumentation tool [14] to build simulation points based
on this technique. The importance of these techniques for
our work is that our methodology uses Pinpoints to simulate
programs in a reasonable time. Sherwoord’s work also shows
that by improving only the performance of the repetitive blocks
that define the entire program behavior, we can achieve overall
improved performance.

The rePLay framework [7] has a similar concept to our
work. In this work, the authors use an extended definition of a
block called a frame. A frame aggregates several basic blocks,
as it ignores unconditional branches, and promotes easy-to-
predict branches into assertions [15]. They also provide a
scheme to replay a frame in case an assertion fires, which
signals a misprediction. In this way, they achieve a coarse
granularity, enabling compiler-like code optimizations during
execution, and alongside the rollback mechanism, the opportu-
nity for very aggressive speculative techniques, such as value
prediction and value reuse [16]. Although the framework is
described, it is not explored in the paper. Frames intuitively
have few opportunities for value reuse and value prediction,
as they are coarse enough to capture several executions of
loops, and seem to represent distinct phases of data progression
in programs. The authors only show manual optimizations in
single frame examples, and do not show any mechanism that
can make automatic runtime optimizations using the frames
collected. In our work, we characterize application behavior on
a finer granularity, so we can better inform other mechanisms.

The recent work of Kambadur et al. [3] also uses a simple
profiling method they call Parallel Basic Block Vectors. It
can be viewed as an extension of Sherwood’s work, as now
every entry in the vector contains n slots, each representing a
degree of parallelism. When a basic block is executed, the
number of parallel threads is observed and used as index
to increment the appropriate part of the entry. This allows
the authors to identify which basic blocks execute at which
frequency and at which parallelism level, clearly identifying
sequential and parallel code blocks. They also identify the
most critical regions of code in terms of performance. Several
scenarios are illustrated, showing how this analysis can be
applied, such as serial and parallel application partitioning,
or analysis of program features by degree of parallelism and
parallelism hotspots.

The Criticality Binary Prediction (CBP) mechanism [8]
observes how many cycles each load instruction stalls the
commit stage and gives priority to the loads that stall. As it

224

only keeps track of the loads, it uses a small 64-bit tagless
table per core, which is reset every 100000 cycles to adapt to
the current program phase. It then gives priority to the loads
found in the table. The paper explores more options, such as
storing the number of stalled cycles for more complex policies,
but overall it uses only 1 bit per table entry and for all memory
request buffer entries for the best trade-off.

Compared to rePlay and CBP, we follow a different ap-
proach, by using the behavior detected to improve existing
hardware mechanisms that need to detect phase changes
and bottlenecks during execution. We evaluate CBP and the
prefetch-aware DRAM controller (PADC) [9] by integrating
them with BLAP and show the resulting improvements in
Section VI.

IV. BLOCK LEVEL ARCHITECTURAL PROFILER

In this section, we introduce the Block-Level Architecture
Profiler (BLAP) and present its implementation in hardware.
BLAP consists of three parts: Behavior Detection, Behavior
Labeling and Behavior Storage. Afterwards, we explain poten-
tial critical path implications and how they were avoided. We
then list the hardware overhead costs of these three stages and
describe additions to further improve the profile information.

Figure 1 shows an abstraction of the BLAP implementation
inside an Out-of-Order (OoO) processor. BLAP’s basic idea
is to characterize the bottleneck of a block by detecting
instruction stalls and storing the information in the BTB when
the last instruction of the block commits.

A. Behavior Detection

With an in-order commit stage, instructions that take long
to commit may stall the whole processor. We consider the in-
structions which stall the commit stage for the longest amount
of time to be the instructions that characterize the block’s
performance issues. We developed BLAP, which modifies the
commit stage to obtain profile information at a basic block
level.

In Figure 2, we show a flowchart of the commit stage in
a superscalar processor with the additional events needed to
implement our detection mechanism. Notice that the BLAP
implementation requires an in-order commit stage, which is
widely used in current commercial processors.

In the commit stage, we must check whether the oldest
instruction is ready to commit 1 . Whenever an instruction

�����������	���

����
����������

�������
 ����� 	���������������

�

����

����	

������������

���������

������	������

�������������

����

�
���
�

�����
�������� �

���������

����
�
�������
�������

����
��
!����"

Fig. 1. Overview of the operation of BLAP in a superscalar processor. Parts
in gray represent BLAP’s modifications or additions to the processor.

Inst. ready
to commit?

1

BEGIN

Inst. is
branch? 3

Branch
prediction
correct? 7

Bottleneck = Branch

8
Stall counter = 0

11

Stall counter++

2

First inst.
committed in
this cycle?

4

Stall counter <
Largest stall?

5

Largest Stall =
Stall Counter

Bottleneck =
Inst. type

6

Store Bottleneck
Largest stall = 0

9

Bottleneck = None
Block_addr. =

Inst. addr.
10

END

No

Yes

Yes

No

Yes

No

No

Yes

Yes

No

Fig. 2. Flow chart of commit stage modifications.

stalls the commit, a Stall Counter is incremented 2 . When
the instruction is ready to be committed, we must check if it
is a branch 3 , as a branch indicates the end of a block. If
it is not a branch, we must also check whether it is the first
instruction being committed in that cycle, as we only need the
instructions which stalled the commit 4 . If it is not the first
instruction being committed and it is not a branch, no action
is necessary, as the instruction has not blocked the stage nor
is it a branch. However, if this is the first instruction, we must
compare its accumulated stall time to the previous largest stall
time of the current block 5 . If the stall is larger, we update
the register keeping track of the bottleneck with the current
instruction type 6 and reset the stall counter 11 . Otherwise,
we skip the update and reset the stall counter at 11 .

If the instruction is a branch, we must store the block
information. First, we check whether the branch was correctly
predicted 7 . As branch instructions do not stall the commit
stage, the only way to characterize a block as branch is to
find out whether it was mispredicted. If the branch is not
correctly predicted, we change the block’s bottleneck type to
Brch 8 . We then store the bottleneck type in the BTB, using
the value of the Block_Address register as index (the address
of the branch that started the block) and store the instruction
address of the current branch instruction in the Block_Address
(as we are starting a new block) 10 . In this way, at the
end of each block, we store the block information using the
instruction address of the branch of the previous block as the
index 9 . We also reset the counters related to largest stall 9
and bottleneck 10 , followed by resetting the stall counter 11 .

In order to prevent profiling characteristics to be affected
by cold start effects in caches, prefetchers and branch pre-
dictors, we designed a stabilizer for BLAP. This stabilizer

225

deals with problems that may arise when a block has an
unstable characteristic in its first executions. It uses a satu-
rating counter to record the number of times the basic block
was executed. When this counter saturates, the last detected
characteristic is considered to be stable, and thus it is identified
as the bottleneck for that block. Further changes in the block
bottleneck will not overwrite the BTB entry, in order to
avoid disabling the improvements that may have caused the
bottleneck reduction and subsequent characterization change.

B. Behavior Storage

In order to use the profile, we must store it for future use.
Based on the correlation results, we use 2 bits per block, ex-
pressing 4 characteristics (None, Brch, Mem, FP). The number
of characteristics can be increased by using more bits per entry,
for future extensions. As the BTB contains all the conditional
and unconditional branch targets, we can extend the BTB to
store characteristics for each block targeted by a branch. That
way, if a branch is taken, we can load the characteristic stored
in the BTB entry as we know that it is the characteristic
profiled for the next block. The register mentioned in the
previous section, Block_Address, is responsible for indexing
each block in the BTB. A 2-bits saturating counter is also
used per entry to stabilize a block’s characteristic.

C. Behavior Labeling

To use our profile information, we created a general
approach to allow implementation of multiple mechanisms.
When a branch is predicted at the fetch stage, we access
the BTB using the address of the branch instruction. The
characteristic is loaded into a new register called Block Char-
acteristic. The information of this register is copied to a new
field for every entry for that instruction (e.g. the ROB) until the
content of Block Characteristic is updated by the next block
profile information. Thus, the fetch buffer’s entries, the decode
buffer’s entries and the ROB entries are all augmented by 2 bits
to store the characteristic pertaining to the block.

D. Critical Path Implications

The detection scheme of BLAP requires additional hard-
ware to support the update of the mechanism’s registers. There
is a special case which occurs when two branches commit in
the same cycle. This means that the block initiated by the first
branch had no stalls, so we aggregate the block with whatever
instructions are committed after the second, ignored branch.
In our evaluations, cycles which committed more than one
branch represented less than 1% of the execution cycles for
NAS-NPB and SPEC-OMP2001 benchmarks. Finally, storing
information in the BTB in the same cycle could require a
longer cycle time. Thus, we write to a buffer and create an
additional pipeline stage used only for BLAP, which stores
the information received by the last block in the BTB. This
extra stage does not affect the processor’s throughput.

The extra stage in BLAP is used to pipeline the actual write
to ensure synchronization with the BTB reads performed by
all instructions being fetched, so the written value is only valid
for the next cycle. Labeling has no implications on the critical
path, requiring only additional information bits going through
the pipeline along with their respective instructions.

E. Hardware Costs and Design Considerations of BLAP

BLAP’s hardware costs can be divided into detection,
storage and labeling. Detection requires two 8-bit counters,
Stall and Largest Stall. It also requires an 8-bit adder and an 8-
bit comparator for these registers. We use two 2-bit Bottleneck
registers, and two Block Address registers, to pipeline the
actual write to the BTB with an additional BLAP Internal
stage. To determine whether a branch was mispredicted, we
add 1 bit for each reorder buffer entry.

For storage, we modify the BTB write port to write the
extra BTB bits. The value in BLAP’s write buffer waits until
no branch instruction has a branch target address to write in
the same cycle, and one extra bit indicates the entry bits to be
written (branch target address or BLAP information). If an-
other block information coming from BLAP would overwrite
BLAP’s buffer while it waits for a write opportunity, we ignore
the second block information as the stall value is likely low
for such conflict to occur. Optionally, we can add an additional
write port to avoid this issue.

We store the labels in a Block Characteristic register, as
we obtain the information bits from the BTB in the fetch
stage. Every following instruction of the block must copy this
information, so we must add these bits to the entries of all
structures. We add 2 bits to every entry of the fetch buffer,
decode buffer and ROB.

The hardware costs are shown in Table II. For each core,
BLAP requires a total storage of 2142 bytes, plus three 2-bit
multiplexer, one 8-bit multiplexer, one 64-bit multiplexer, an
8-bit adder and an 8-bit comparator. Therefore, the total area
overhead per core consists of 206548 transistors. In Sandy
Bridge, that means 1652384 transistors, out of 2.27 billion
transistors, corresponding to an overhead of less than 0.08%.

TABLE II. HARDWARE COSTS OF BLAP.

Item Cost

Detec-
tion

8-bit Stall counter; 8-bit Largest Stall counter;
8-bit adder for Stall counter;
8-bit comparison (Stall counter with Largest Stall);
2-bit Bottleneck reg. (Commit);
64-bit Block Addr. reg. (Commit);
1-bit pred. info. per ROB entry (168 entries total);
1 2-input 2-bit multiplexer, uses branch pred. info. to update BLAP;
1 2-input 2-bit multiplexer, bottleneck evaluation and selection;
1 2-input 8-bit multiplexer, stall evaluation and selection;
Total of 316 bits for detection;

Storage

2-bit Bottleneck reg. per BTB entry (4096 entries total);
2-bit Stabilizer counter per BTB entry (4096 entries total);
2-bit Multiplexer, selects between BLAP and regular branch write;
2-bit Bottleneck reg. (BLAP Buffer);
1 64-bit Block Addr. reg. (BLAP Buffer);
1 2-input 2-bit multiplexer (selects BTB write data);
1 2-input 64-bit multiplexer (selects BTB write address);
Total of 2048 bytes of storage;

Label

2-bit Block Characteristic reg.;
2-bit Block Characteristic per fetch buffer entry (18 entries total);
2-bit Block Characteristic per decode buffer entry (28 entries total);
2-bit Block Characteristic per ROB entry (168 entries total);
Total of 430 bits for labeling;

226

V. EVALUATION METHODOLOGY

A. Simulation Environment and Workloads

To validate our mechanism, we used a cycle-accurate
in-house simulator [17]. It accurately simulates the micro-
architecture, modeling all functional unit contention, regis-
ter dependencies, processor system restrictions (e.g. memory
disambiguation), in addition to cache architecture, DRAM
memory and interconnections. In Table III, we specify the
details of the simulated system, whose configuration is based
on the Intel Sandy Bridge micro-architecture.

We used two parallel benchmark suites for evaluation, each
running with 8 threads. Seven applications from the NAS-NPB
benchmark suite, with the A input size and seven applications
from the SPEC-OMP2001 benchmark suite with ref input size.
Each thread executes 150 million instructions on average. The
trace of each application corresponds to a single execution of
the application phase. The applications use OpenMP and were
compiled with gcc 4.6.3, with the -O3 option.

B. Evaluated Memory Controller Policies

Given the correlation coefficients presented in Section II,
we chose to improve memory controller because memory
accesses had the highest correlation with performance. Fol-
lowing the proposals of Ghose et al. [8] and Lee et al. [9],
we designed an improved memory controller that can use
the profile information provided by BLAP to assign different
priorities to memory accesses depending on their relevance for
the application’s critical path. The baseline for the memory
controller policies is the FR-FCFS (First Row - First Come
First Serve) [18] policy, which gives priority to row hits
(First Row), thus lowering the average memory wait time, and

TABLE III. SIMULATED ARCHITECTURAL PARAMETERS.

Item Baseline configuration

Processor
cores

8 cores OoO @ 2.66 GHz, 32 nm; in-order front-end and commit;
16 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit stages);
16 B fetch block size (up to 6 instructions);
Decode and commit up to 5 instructions;
Rename/dispatch/execute up to 5 μ instructions;
18-entry fetch buffer, 28-entry decode buffer;
3-alu, 1-multiplication and 1-division integer units (1-3-32 cycle);
1-alu, 1-multiplication and 1-division floating-point units (3-5-10 cycle);
1-load and 1-store functional units (1-1 cycle);
MOB entries: 64-read, 36-write; 168-entry ROB;

Branch
predictor

1 branch per fetch; 8 parallel in-flight branches;
4 K-entry 4-way set-assoc., LRU policy BTB;
Two-Level PAs 2-bit; 16 K-entry BHT;

L1D
cache

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L1I
cache

32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;

L2
cache

Private 256 KB, 8-way, 64 B line size; LRU policy;
MSHR: 4-request, 6-write-back, 4-prefetch; 4-cycle;
Stream prefetch: 4-degree, 64-dist., 64-streams;

L3
cache

Shared 16 MB (8-banks), 2 MB per bank; MOESI coherence protocol;
16-way, 64 B line size; LRU policy; 6-cycle; Inclusive;
MSHR: 8-request, 12-write-back; Bi-directional ring interconnection;

DRAM
and Bus

On-chip DRAM controller, 8 banks/channel; 4-channels; DDR3 1333 MHz;
8 burst length; 4 KB row buffer per bank, Open-row first;
4 core-to-bus frequency ratio; 9-CAS, 9-RP, 9-RCD and 28-RAS cycles;
MSHR: 128-request, 64-write-back, 32-prefetch;

then priority to older accesses (First-Come, First-Serve). In
order to compare our solution with the state-of-the-art, we
also implemented the original CBP from Ghose et al. [8]
and the Prefetch-Aware DRAM Controller (PADC) from Lee
et al. [9]. Due to different configurations of the processor,
larger cache and lower memory latency, we were not able to
achieve improvements as high as those reported by the original
papers. We have however observed that, as memory pressure
increases, the improvements achieved by these mechanisms
and our implementations also increase.

The CBP mechanism gives priority to the load instructions
that stall the commit stage. As it only keeps track of the loads,
it uses a small 64-bit tagless table per core, which is reset every
100000 cycles to adapt to program phase. It gives priority
to all loads found within this internal table as well as any
load that stalls the commit stage. The authors explore more
options, such as storing the number of stalled cycles for more
complex policies, but the results using only 1 bit per table
entry proved to have the best trade-off between hardware cost
and performance, and we used it in our evaluations.

For the PADC mechanism, each cache line is extended by
adding 2 bits: a prefetch bit and an access bit. These bits track
which prefetches were useful. By measuring prefetch accuracy
every 100000 cycles, PADC decides whether it should give the
same priority to prefetches and demands, or whether it should
prioritize demands and drop prefetches based on the prefetch
accuracy. The authors define 4 levels for their architecture.
Over 70% prefetch accuracy, the mechanism treats all requests
equally and does not drop prefetches. Between 30 % and 70%
prefetch accuracy, it prioritizes demand requests and drops
prefetches that waited in the memory request buffer for longer
than 50000 cycles to be serviced. Between 10% and 30%
accuracy, the mechanism drops those prefetches who waited
for longer than 300 cycles to be serviced. If accuracy is lower
than 10%, any prefetch which waits for more than 100 cycles
to be serviced is dropped.

The BLAP-based mechanisms were implemented as fol-
lows. BLAP-CBP is the adaptation of CBP using the basic
block profile information provided by BLAP. We give priority
to blocks that BLAP characterized as Mem, through the
CBP memory controller policy. BLAP-CBP sets the following
priority order: 1) Critical row hits; 2) Non-critical row hits; 3)
Critical non-row hits, and 4) Non-critical, non-row hits.

In BLAP-PADC-8L, generated prefetches get BLAP infor-
mation from the requests that triggered them. To emulate the
concept of PADC, we drop prefetches that waited more than
the average demand request wait time. We implemented an 8-
level priority memory controller. As we have information of
which demand requests are critical, which prefetch requests
are critical, and whether the request is a row hit, we need
23 levels of priorities. The 8 levels are: 1) Critical demand
row hit requests; 2) Critical prefetch row hit requests; 3) Non-
critical demand row hit requests; 4) Non-critical prefetch row
hit requests; 5) Critical demand requests on another row;
6) Critical prefetch requests on another row; 7) Non-critical
demand requests on another row; and 8) Non-critical prefetch
requests on another row.

Figure 3 illustrates the request selection logic for different
memory controller mechanisms. The mechanism compares the

227

Row hit Critical Prefetch Age

Present in FR-FCFS policy (baseline)

Added by
CBP, BLAP

Added by
PADC, BLAP

078910

Fig. 3. Request selection logic for different memory controller mechanisms.

information bits from the request as a single number, by
concatenating all bits and considering the left-most bits as most
significant. The age represents how many cycles the request
has been waiting for service in the memory controller request
buffer. The prefetch bit is set to 0 on prefetches and 1 on
demand requests, to give priority to demand requests. The
critical bit is the information fed either by CBP or BLAP.
Finally, row hit is 1 if the address of the request matches the
currently open row.

In comparison to CBP, the first advantage of BLAP-CBP is
that we can exploit other processor bottlenecks beyond mem-
ory pressure. The second advantage of this characterization that
yields performance gains is that it also provides information on
branch mispredictions. We will not give priority to loads that
are followed by a mispredicted branch as doing so would not
help the block performance. Third, as we can address blocks
and store their information using the branch target buffer,
we are able to store a much larger amount of information,
4096 entries, compared to 64 entries in CBP’s table. Both
implementations require the same amount of hardware in the
memory controller and channels to pass the information bit
that indicates critical requests.

In the evaluated architecture, BLAP-PADC-8L requires
four times less storage than PADC by using the BTB to store
the profile information.

VI. EXPERIMENTAL RESULTS

Figure 4 shows results for different mechanisms running
NAS-NPB and SPEC-OMP2001 benchmarks. In the figure,
we show the speedup in terms of execution time for all
benchmarks, normalized to the baseline. The first observation
is that the average gains of both related work are different from
the ones found in their work, due to different benchmarks,
architectural parameters and simulators. Although the impact
of the mechanism implementation is noticeable, as seen in the
IS benchmark, the average benchmark improvement is low.

For this experiment, PADC offers the highest improvement,
achieving 19.02% for IS. We have average performance im-
provements of 1.89% for CBP, 0.80% for BLAP-CBP, 3.10%
for PADC and 3.90% for BLAP-PADC-8L. In general, CBP
achieves better results than BLAP-CBP. This is due to CBP’s
information being specifically designed for load instructions,
while BLAP profiles at a coarser granularity.

BLAP-PADC-8L outperforms PADC on average as we
adapted it to perform in a flexible way, by using the average
demand request time. Using BLAP information, the mecha-
nism is able to drop prefetches more aggressively while still
servicing important prefetches. This is because the prioritized
prefetches come from critical, repetitive blocks. This fact also

makes BLAP-PADC-8L more likely to drop false-positive
triggered prefetches, as they have a low priority.

In order to stress the memory controller mechanisms and
their profiling methods, we used a stream prefetcher with
increased aggressivity. A stream prefetcher normally looks
for cache misses within a range (search distance), and, if
the sequential misses fall within this distance, we allocate a
stream. If any cache access falls in the range of m accesses
(where m is the prefetch distance parameter) starting at the
stream’s initial address, we prefetch n cache lines (where n is
the prefetch degree parameter) starting from address prefetch
triggering address + (prefetch distance * cache line size), then
we set the starting address to the value of the requested address
that triggered the prefetches. In our baseline, we used prefetch
degree 4 and prefetch distance 64.

Figure 5 shows the results with an increased stream
prefetcher aggressivity for CBP, PADC, BLAP-CBP and
BLAP-PADC-8L, with prefetch degree 8 and prefetch distance
128. This experiment shows that BLAP-PADC-8L offers the
highest improvement, achieving 37.05% for Wupwise. We have
average improvements of 3.99% for CBP, 1.72% for BLAP-
CBP, 4.24% for PADC and 13.14% for BLAP-PADC-8L.

CBP performed better than in the baseline experiment as
it only assigns a higher priority to demand requests. Thus,

B
T

C
G F
T IS L
U

M
G S
P

A
p
p
lu

A
p
si

F
m

a3
d

G
al

g
el

M
g
ri

d

S
w

im

W
u
p
w

is
e

AV
G

−5%
0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

S
p
ee

d
u
p

CBP BLAP-CBP PADC BLAP-PADC-8L

Fig. 4. Performance results for NAS-NPB and SPEC-OMP2001, relative to
the FR-FCFS baseline.

B
T

C
G F
T IS L
U

M
G S
P

A
p
p
lu

A
p
si

F
m

a3
d

G
al

g
el

M
g
ri

d

S
w

im

W
u
p
w

is
e

AV
G

−10%
0%

10%

20%

30%

40%

NAS–NPB SPEC-OMP 2001

S
p
ee

d
u
p

CBP BLAP-CBP PADC BLAP-PADC-8L

Fig. 5. Performance results for NAS-NPB and SPEC-OMP2001 with
increased aggressivity prefetcher, relative to the FR-FCFS baseline.

228

B
T

C
G F
T IS L
U

M
G S
P

A
p
p
lu

A
p
si

F
m

a3
d

G
al

g
el

M
g
ri

d

S
w

im

W
u
p
w

is
e

AV
G

−5%
0%

5%

10%

15%

20%

NAS–NPB SPEC-OMP 2001

S
p
ee

d
u
p

BLAP-Cache BLAP-BTB

Fig. 6. Performance results comparison between BTB and a large cache,
relative to the FR-FCFS baseline.

it improves performance by only servicing prefetches when
there are no critical demand requests. For the reasons men-
tioned for the previous experiment, BLAP-CBP also improves
performance, but does not reach the same level as CBP.

PADC achieves the same performance improvements as in
the baseline. This happens because our evaluations used the
same parameters proposed by the authors, although different
system architectures may require different internal parameters.
For this reason, PADC is not able to drop prefetches as aggres-
sively as needed. On the other hand, BLAP-PADC-8L achieved
high performance improvements for several benchmarks due
to its highly aggressive prefetch dropping.

Figure 6 compares two implementations of BLAP-PADC-
8L. The first implements BLAP using the BTB while the
second uses a cache which is large enough to avoid any conflict
and capacity misses in all benchmarks. Moreover, it is able to
differentiate and store blocks targeted by branches as well as
fall-through blocks.

Comparing the BTB and the large cache implementations,
we can notice similar performance improvements over the
baseline. It shows that the large number of entries in the BTB
is sufficient to keep the profile information for most of the
benchmarks.

VII. CONCLUSIONS

Our results show that basic block granularity can be as
relevant as single instruction granularity for memory accesses.
The findings indicate that as basic blocks naturally track a
program’s phase progression, we are able to more accurately
adapt to different memory pressures that occur in different
program phases. On average, we were able to improve perfor-
mance by 3.9% compared to the baseline FR-FCFS, with a low
hardware overhead. We have also shown that our technique
scales better than the state-of-the-art when faced with more
aggressive prefetch policies that result in a higher memory
pressure.

In the future, we intend to characterize blocks regarding
more events, such as data-dependent branches [19]. The idea

of basic block detection at the commit stage can also be
overlapped with group commit [20], and can enable the im-
plementation of several ideas based on basic block analysis.

ACKNOWLEDGMENT

This work was partially supported by CNPq and Capes.

REFERENCES

[1] J. Reinders, VTune performance analyzer essentials. Intel Press, 2005.
[2] J. Cocke, “Global common subexpression elimination,” SIGPLAN Not.,

vol. 5, no. 7, Jul. 1970.
[3] M. Kambadur, K. Tang, and M. A. Kim, “Harmony: collection and anal-

ysis of parallel block vectors,” in Int. Symp. on Computer Architecture
(ISCA), 2012.

[4] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully
integrated multi-cpu, gpu and memory controller 32nm processor,” in
Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2011.

[5] V.-M. Panait, A. Sasturkar, and W.-F. Wong, “Static identification of
delinquent loads,” in Code Generation and Optimization (CGO), 2004.

[6] P. Ratanaworabhan and M. Burtscher, “Program phase detection based
on critical basic block transitions,” in Int. Symp. on Performance
Analysis of Systems and software (ISPASS), 2008.

[7] S. J. Patel and S. S. Lumetta, “replay: A hardware framework for
dynamic optimization,” Trans. on Computers, vol. 50, no. 6, 2001.

[8] S. Ghose, H. Lee, and J. F. Martínez, “Improving memory scheduling
via processor-side load criticality information,” in Int. Symp. on Com-
puter Architecture (ISCA), 2013.

[9] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt, “Prefetch-aware
dram controllers,” in Int. Symp. on Microarchitecture (MICRO), 2008.

[10] J. Huang and D. Lilja, “Extending value reuse to basic blocks with
compiler support,” Trans. on Computers, vol. 49, no. 4, pp. 331–347,
2000.

[11] T. Sherwood, E. Perelman, and B. Calder, “Basic block distribution
analysis to find periodic behavior and simulation points in applications,”
in Int. Conf. on Parallel Architectures and Compilation Techniques
(PACT), 2001.

[12] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, 2005.

[13] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large intel itanium programs
with dynamic instrumentation,” in Int. Symp. on Microarchitecture
(MICRO), 2004.

[14] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in ACM SIGPLAN Con-
ference on Programming language design and implementation (PLDI),
2005.

[15] S. J. Patel, M. Evers, and Y. N. Patt, “Improving trace cache effec-
tiveness with branch promotion and trace packing,” ACM SIGARCH
Computer Architecture News, vol. 26, no. 3, 1998.

[16] M. L. Pilla, P. O. A. Navaux, B. R. Childers, A. T. da Costa, and
F. M. G. Franca, “Value predictors for reuse through speculation on
traces,” in Int. Symp. on Computer Architecture and High Performance
Computing (SBAC-PAD), 2004.

[17] M. Alves, “Increasing energy efficiency of processor caches via line
usage predictors,” Ph.D. dissertation, Universidade Federal do Rio
Grande do Sul, May 2014.

[18] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens, “Memory
access scheduling,” in Int. Symp. on Computer Architecture (ISCA),
2000.

[19] M. U. Farooq, K. Khubaib, and L. K. John, “Store-load-branch (slb)
predictor: A compiler assisted branch prediction for data dependent
branches,” in Int. Symp. on High Performance Computer Architecture
(HPCA), 2013.

[20] F. Afram, H. Zeng, and K. Ghose, “A group-commit mechanism for
rob-based processors implementing the x86 isa,” in Int. Symp. on High
Performance Computer Architecture (HPCA), 2013.

229

