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Abstract—One of the main challenges for modern parallel
shared-memory architectures are accesses to main memory.
In current systems, the performance and energy efficiency of
memory accesses depend on their locality: accesses to remote
caches and NUMA nodes are more expensive than accesses to
local ones. Increasing the locality requires knowledge about how
the threads of a parallel application access memory pages. With
this information, pages can be migrated to the NUMA nodes that
access them (data mapping), as well as threads that access the
same pages can be migrated to the same node such that locality
can be improved even further (thread mapping).

In this paper, we propose LAPT, a mechanism to store the
memory access pattern of parallel applications in the page table,
which is updated by the hardware during TLB misses. This
information is used by the operating system to perform an
optimized thread and data mapping during the execution of the
parallel application. In contrast to previous work, LAPT does
not require any previous information about the behavior of the
applications, or changes to the application or runtime libraries.
Extensive experiments with the NAS Parallel Benchmarks (NPB)
and PARSEC showed performance and energy efficiency improve-
ments of up to 19.2% and 15.7%, respectively, (6.7% and 5.3%
on average).

I. INTRODUCTION

Multi-core processors, while providing an increased com-
putational power, create a high pressure on the memory
subsystem. To reduce the average latency per memory re-
quest, processors have a complex memory hierarchy, formed
by multiple cache levels, some composed of multiple banks
connected to a memory controller. Outside the processor chip,
the memory controller interfaces a Uniform or Non-Uniform
Memory Access (UMA or NUMA) DRAM system.

During the execution of a multi-threaded application, the
placement of its threads and their data can have a great impact
on performance and energy consumption, which are important
goals for current and future architectures [31]. Considering
that each processor family uses a different organization of
the cache hierarchy and the main memory system, the impact
of the execution time also varies among different systems.
In general, the cache hierarchy is formed by multiple levels,
where the levels closer to the processor cores tend to be private,
followed by caches shared by multiple cores. For NUMA
systems, besides the cache hierarchy, the main memory is also
clustered between cores or processors.

Improving the data locality in NUMA systems can reduce
the number of accesses to remote nodes as most of the threads’
data will be kept close to them [24]. Moreover, the thread
placement can reduce the number of cache invalidations and

line replications, considering that threads that share data will
be placed closer, sharing the same memory resources [2].
These thread and data mappings can impact different resources,
such as interconnection systems and cache coherence proto-
cols.

Several related mechanisms for thread and data mapping
have been proposed. Most of the proposals perform thread
or data mapping separately [2], [13], [23], [10]. Several
approaches focus on static mapping using memory traces from
previous executions in controlled environments such as simu-
lators [4], which has a high overhead and is not able to handle
dynamic behavior. Some mechanisms depend on particular
APIs [7], or rely on indirect or incomplete information about
the locality of memory accesses [2], [13].

In this paper, we propose a Locality-Aware Page
Table (LAPT), which enables operating systems to perform
thread and data mapping. Our mechanism detects the locality
of memory accesses in hardware, and performs the thread
and data mappings in software. LAPT has the following main
features:

• LAPT operates during the execution of the application,
allowing the mapping to be performed dynamically, without
needing previous information about the application’s behavior.

• By detecting the locality in hardware, LAPT has
access to many more memory access samples than previous
mechanisms, generating more accurate information. More
specifically, it can track all memory accesses that result in
TLB misses.

• Any shared memory-based parallel application is able
to benefit from the optimized mapping without modification
to its source code.

• It does not depend on any particular parallelization API.
Also, no special API support is required, since the mechanism
can be implemented in the operating system.

To our knowledge, this is the first mechanism to perform
both thread and data mapping that is independent from the par-
allelization API. The simulation results executing applications
from the NAS and PARSEC benchmark suites show average
performance gains of 10.6%. Experiments on a real machine
showed average performance gains of 6.7%.

II. RELATED WORK

Several related thread and data mapping techniques have
been proposed. In [4], a method to statically detect the com-
munication pattern for thread mapping has been proposed.
The authors generate memory access traces in a simulator
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and analyze them to generate a communication pattern. This
method can provide a high accuracy, as it has access to
information of the entire execution of the application. A
similar mechanism was proposed in [24], [14]. To generate
information to guide data mapping, they used features from
the performance monitoring unit (PMU) of Itanium-2 to collect
samples of the memory addresses accessed by each thread. The
main drawbacks of these methods are that they require the
analysis of traces, which is an expensive procedure, and are
not able to handle changes in the application behavior. LAPT
does not have these disadvantages, as it performs mapping
dynamically.

The PMU of Itanium-2 is also used in [23], where the
authors perform the data mapping dynamically. Their profiling
mechanism requires traps to the operating system on every
high latency memory load operation or TLB miss, imposing
a high overhead. Therefore, the authors enable the profiling
mechanism just during the beginning of each application,
losing the opportunity to handle changes during the execution
of the application. A similar approach is described in [30],
but using hardware monitors on Ultrasparc-III platforms. Both
mechanisms perform only data mapping, and do not consider
the communication between the threads, which is important to
improve the usage of cache memories and interconnections.

Other mechanisms that perform mapping dynamically de-
pend on indirect statistics from hardware counters, such as
instruction per cycle (IPC). One example is Autopin [21],
which evaluates several thread mappings given as input and
selects the one with the highest IPC. Similarly, Blackbox [27]
selects the best mapping among 1000 random mappings. As
these mechanisms have to evaluate several mappings, a lot
of time is spent to find the best one. The probability of
selecting the best possible mapping is very low, since the
number of different mappings is exponential to the number
of threads. Furthermore, the hardware counters they use are
not accurate enough to represent communication. On the
other hand, LAPT has direct access to the memory addresses
accessed by each thread. ForestGOMP [7] also uses indirect
statistics from hardware counters, and supports only OpenMP
based applications, while LAPT is able to handle any shared
memory based application.

In [2], the authors use hardware counters that provide
memory addresses of requests solved by remote cache mem-
ories. It detects incomplete communication patterns, since
memory requests resolved by local caches are not considered.
SPCD [13] uses page faults of parallel applications to detect
communication. Although these proposals have access to the
memory addresses, only a small sample of all accesses is taken
into account. LAPT guarantees that all memory pages are
considered when detecting the locality by tracking the TLB
misses. Furthermore, these previous proposals do not perform
data mapping, and therefore are not able to reduce remote
memory accesses in NUMA architectures.

III. LAPT – A LOCALITY-AWARE PAGE TABLE

Our mechanism uses the virtual memory implementation of
current architectures. Virtual memory requires the translation
of virtual addresses to physical addresses for every memory
access. To do so, the operating system keeps tables in the

main memory that contain the physical address and protection
related information for every page. To reduce the amount of
accesses to the page table in the main memory, a special cache
memory, called the Translation Lookaside Buffer (TLB), is
responsible for caching the page table translation entries for
the most recently accessed pages. On every memory access,
the processor checks if the corresponding page has a valid
entry in the TLB. If a valid entry already exists (TLB hit),
the virtual address is translated to a physical address and the
processor performs the memory access. In case of a TLB miss,
the processor performs a page table walk and caches the entry
in the TLB before proceeding with the address translation.

We introduce a Locality-Aware Page Table (LAPT), a page
table with special fields that allows operating systems to per-
form thread and data mapping in parallel applications. LAPT
is implemented on both hardware and software levels. On the
hardware level, LAPT keeps track of all TLB misses, detecting
the communication between the threads and registering a list of
the latest threads that accessed each page in the corresponding
page table entry. On the software level, the operating system
maps threads to cores based on the detected communication
pattern, and maps the pages to NUMA nodes by checking
which threads accessed each page.

We first explain how we detect the communication in
hardware. Afterwards, we describe how we use the detected
communication to map threads and data. Finally, we discuss
the overhead of our proposal.

A. Detecting the Communication

To identify the threads that access each page, LAPT
requires the addition of an entry in the page table. We
call this entry communication vector (CV ). Each CV stores
the IDs of the last threads that accessed the corresponding
page. Whenever CV gets full, old thread IDs need to be
removed to make room for the new ones, keeping temporal
locality. LAPT also introduces a communication matrix (CM )
in main memory for each parallel application, which stores an
estimation of the amount of communication between each pair
of threads. Special registers containing the memory address
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and dimensions of CM , as well as the ID of the thread being
executed, must be added to the architecture and updated by
the operating system.

The behavior of LAPT is as follows. When thread T tries
to access a page P but its entry is not present in the TLB,
the processor performs a page table walk. Besides fetching
the page table entry of page P , the processor also fetches
the corresponding communication vector CVP . LAPT then
increments the communication matrix CM in row T , for all
the columns that correspond to a thread in CVP :

CM [T ][ CVP [i] ] ← CM [T ][ CVP [i] ] + 1,

0 ≤ i < sizeof(CVP ) (1)

After updating CM , LAPT inserts thread T into CVP :

CVP [i] ← CVP [i− 1], 0 < i < sizeof(CVP ) (2)

CVP [0] ← T (3)

B. Calculating the Thread Mapping

The information provided by the communication detection
is used to calculate an optimized mapping from threads to
processing units (PUs) during the execution of the parallel
application. The mapping problem is NP-hard [6], therefore it
requires the use of efficient heuristics to calculate the mapping.
Dynamic mapping requires algorithms with a short execution
time, since its overhead directly impacts the executing appli-
cation.

We model thread mapping as a graph problem. There are
two graphs, the application graph and the machine hierarchy
graph. The application graph can be obtained directly from
the communication matrix CM kept by LAPT. The vertices
represent the threads and the edges the amount of communica-
tion between them. In the machine hierarchy graph, the vertices
represent the components of the memory hierarchy, such as the
cores and caches, and the edges represent the links between
them.

To calculate the mapping, we use the dual recursive bi-
partitioning algorithm of the Scotch mapping library [26],
version 6.0. We selected this algorithm because it has a short
execution time (less than 1 ms to map 32 threads) while
providing good results [28], and is therefore suitable for online
mapping. It has a complexity of O(N3), where N is the
number of processes to be mapped [15]. Other algorithms,
such as METIS [20], Zoltan [12] or TreeMatch [17], could be
used. The algorithm receives the communication and hierarchy
graphs as input, and outputs the PU for each thread such that
the total cost of communication is minimized. This information
is then used to migrate the threads to their assigned PUs.

The operating system chooses the frequency in which
the thread mapping routine is called. To prevent unnecessary
migrations and to reduce the overhead, we dynamically adjust
the frequency. If the calculated mapping does not differ from
the previous mapping, we increase the mapping interval by
50 ms, since the mapping is stable. If the mapping differs, we
divide the interval by 2. The interval is kept between 50 ms
and 500 ms to limit the overhead while still being able to react
quickly to changes of communication behavior. The initial time
interval was set to 300 ms.

C. Calculating the Data Mapping

To calculate the data mapping, the operating system iterates
over the page table of the application, verifying the contents of
the communication vector CV of each page. In the operating
system, we also keep a separate data structure to store an esti-
mation of the amount of memory accesses from each NUMA
node. We call this data structure NUMA access table (NAT).
There is one entry in the NAT for each page. Each entry has
one counter per NUMA node.

When the data mapping routine is called, for every page P
of the application, the NAT of page P is incremented in the
NUMA nodes of each thread of the CV of the corresponding
page:

NAT[P ][ node(CVP [i]) ] ← NAT[P ][ node(CVP [i]) ] + 1,

0 ≤ i < sizeof(CVP )
(4)

Where node(x) is a function that returns the NUMA node in
which thread x is running. After the contents of NAT[P] are
updated, we use the following equations to determine if page
P should be migrated to node N .

DataMap(P ) = {N | NAT[P ][N ] = max(NAT[P ])} (5)

Migrate =

�
true if max(NAT[P ]) ≥ 2 · avg(NAT[P ])

false otherwise
(6)

A page migration will happen only if the value of the
counter of the node returned by DataMap is greater or equal
twice its average value. In this way, we reduce the possibility
of having a ping-pong effect of page migrations between the
NUMA nodes. Naturally, a migration happens only if the
node returned by the DataMap function is different from the
NUMA node in which page P currently resides. Also, every
time a page is migrated and the average of NAT[P] is at least 1,
we use an aging technique in which all elements of NAT are
divided by 2, making it possible to adapt to changes in access
behavior.

The operating system calls the data mapping routine in two
situations. First, whenever the thread mapping routine is called
and causes a change in the mapping. This is done in order
to move the pages used by the threads when they migrate.
Second, whenever there has been a long time since the last
call, since the data mapping may change even if the thread
mapping keeps the same. In our experiments, the maximum
interval to call the data mapping routine was 500 ms.

D. Example of the Operation of LAPT

To illustrate how LAPT works, consider the example
shown in Fig. 1, where an application that consists of 6
threads is executing on a NUMA machine with 4 nodes. The
communication vector supports up to 4 thread IDs. Thread 3
tries to access page P , which does not have an entry in
the TLB. The processor then performs a page table walk
to read the corresponding page table entry. Besides reading
the physical address and page protection information, it reads
the communication vector, which contains thread IDs 0, 2,
1, and 4, in the order from MRU to LRU position. The
core running thread 3 continues its execution. In parallel to
that, LAPT increments the communication matrix in cells
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(3, 0), (3, 2), (3, 1) and (3, 4). After that, LAPT updates the
communication vector, moving thread 3 to the MRU position
and shifting all the other threads in CV towards the LRU
position, removing thread 4.

During the execution, the operating system evaluates the
communication matrix to update the thread mapping. The
operating system changes the mapping of the threads to
execute thread 0 on NUMA node 0, and migrates the other
threads to node 1. Then, it evaluates the NUMA Access Table
for data mapping. The initial value of all the elements in the
NAT[P] is 0. Since only thread 0 is executing on node 0, the
corresponding entry in the NAT[P] will be incremented by 1.
Likewise, the other three threads that are in the CV are running
on node 1, whose value will be incremented by 3. The node
with highest element in NAT[P] is node 1, with value 3, and
the average of the values of NAT[P] is 1. Therefore, page P
is migrated to node 1 following Eq. 6.

E. Overhead

The overhead consists of storage space in the main mem-
ory, circuit area to implement LAPT in the processor, and
runtime overhead.

1) Memory Storage Overhead: The following structures are
stored in the main memory:

Communication matrix (CM): It requires 4 ·N2 bytes,
where N is the number of threads, considering an element size
of 4 Bytes. For 256 threads, the communication matrix requires
256 KByte. If during the execution the parallel application
creates more threads than the maximum supported by the
communication matrix, the operating system can allocate a
larger matrix and copy the values from the old matrix.

Communication vector (CV): It is stored on the entries of
the last level page table. A common size for each page table
entry in current architectures is 8 Bytes, as in x86-64 [16]. We
extend the size of each entry to 16 Bytes, reserving 2 Bytes to
store each thread ID. This allows us to track 4 threads per page,
supporting up to 65536 threads per parallel application. The
space required by CV represents less than 0.2% of memory
space overhead compared to the original system when using a
standard 4 KByte page size.

NUMA access table (NAT): We store one entry in the NAT
per page the application uses. A multilevel hash is applied to
index the NAT without collisions. We use 1 Byte to store each
counter, which results in an extra 0.2% of storage overhead.

2) Circuit Area Overhead: LAPT requires the addition of
some registers, adders, and multiplexers to each core. More
specifically, 64-bit registers are used to store the position in
memory of CM , intermediary values to compute the memory
position of an entry on CM , and the displacement to read
CV for a page. 16-bit registers store the thread ID, the IDs
stored on CV and one of these IDs to compute the address
of an entry on CM. One 32-bit register is required to store
the value of CM [T ][ CVP [i] ]. Two 64-bit carry look-ahead
adders are employed to compute the addresses of CVP and
CM [T ][ CVP [i] ], while a 32-bit carry look-ahead adder
is used to increase the value of CM [T ][ CVP [i] ]. Finally,
multiplexers define which values are summed up. In total,

TABLE I: Configuration of the experiments.

Parameter Value

R
ea

l Processors 2x Xeon E5-2650 (SandyBridge), 8 cores, 2-SMT
Caches/processor 8x 32 KByte L1, 8x 256 KByte L2, 20 MByte L3
System memory 32 GByte DDR3-1333, 4 KByte Page size

Si
m

ic
s

Processors 4x 2 cores processors, 2.0 GHz, 32 nm
L1 cache/processor 2x16 KByte, 4-way, 1 bank, 2 cycles latency
L2 cache/processor 1 MByte, 8-way, 2 banks, 5 cycles latency
TLB/processor 2x TLBs, 64 entries, 4-way
Cache coherence directory-based MOESI protocol, 64 Byte line size
Memory 8 GByte DDR3-1333 9-9-9, 4 KByte Page size

Interconnection 1/40 cycles latency (intra/interchip)
64/16 Byte bandwidth (intra/interchip)

LAPT requires less than 25, 000 additional transistors per core,
which represents an increase in transistors of less than 0.009%
in a current processor.

3) Runtime Overhead: The additional hardware introduced
by LAPT is not in the critical path, since it operates in parallel
to the normal operation of the processor. On the hardware
level, the time overhead introduced by LAPT consists of the
additional memory accesses to update the page table entries
and communication matrix. The amount of additional memory
accesses depends on the TLB miss rate, which differs for each
application. On the software level, the time overhead includes
the calculation of the thread mapping and data mapping, and
the migrations. An evaluation of the time overhead is found in
Section V-C.

IV. EXPERIMENTAL METHODOLOGY

In this section, we describe how we evaluated our proposed
mechanism. We describe the types of experiments we per-
formed: evaluation on a full system simulator, and evaluation
on a real machine. We also show which benchmarks we used
as workload. Table I summarizes the parameters of the real
and simulated machines.

A. Evaluation on a Full System Simulator

We implemented LAPT in the Simics full system simula-
tor [22], extended with the GEMS-Ruby memory model [25]
and the Garnet interconnection model [1]. The simulated ma-
chine runs the Linux kernel and consists of 4 processors, each
with 2 cores, with private L1 caches, and L2 caches shared by
all cores. Each processor is on a different NUMA node. Cache
latencies were calculated using CACTI [29], and the memory
timings were taken from JEDEC [18]. We simulate the bench-
marks with small input sizes due to simulation time constraints.
To compensate for the small input sizes, we reduced the size
of caches memories and TLBs accordingly, as done in [11].
We compare the results on the simulator to its default mapping
and to an oracle mapping. The default mapping is the original
scheduler of the Linux kernel, combined with an interleaved
data mapping policy of GEMS. The oracle mapping generates
mappings considering all memory accesses. we also used the
Scotch library [26] in the oracle mapping, otherwise it would
be unfeasible to calculate the thread mappings. The results are
normalized to the default mapping.

201



B. Evaluation on a Real Machine

Since LAPT is an extension to current hardware, we
simulate its behavior with Pin [3], a binary instrumentation
tool. We used Pin for the analysis because it is faster than
a full system simulator. To make it possible to evaluate
LAPT in real machines, the information about the thread and
data mappings generated inside our Pin tool are fed into the
mapping mechanism during the execution of the applications.

The experiments in the real machine were performed in a
two NUMA node machine, which has one Intel Xeon E5-2650
processor per node, with a total of 32 virtual cores. The
machine runs version 3.8 of the Linux kernel. Information
about the hardware topology was gathered automatically using
Hwloc [8]. Besides performance, we measured L2 and L3
cache misses per thousand instructions (MPKI), as well as
energy consumption using the Running Average Power Limit
(RAPL) hardware counters [16] with Intel PCM. Results
regarding the traffic on the QuickPath Interconnect (QPI) were
estimated using Intel VTune by measuring the amount of cache
to cache transfers and remote memory accesses.

All experiments in the real machine were executed
30 times. We show average values as well as a 95% confidence
interval calculated with Student’s t-distribution. We compare
the results of our proposal to the default mapping performed
by the operating system, to random static mappings and to an
oracle mapping. The operating system mapping is the original
scheduler and Autonuma [9] data mapping policy of the Linux
kernel. It represents the baseline for our experiments. For
the random mapping, we randomly generated a thread and
data mapping for each execution. For the oracle mapping, we
generated traces of all memory accesses for each application
and perform an analysis of the communication and page usage
patterns, similar to [4], and use the Scotch library [26] to
calculate the thread mappings. We disabled the automatic
kernel thread scheduling and Autonuma for LAPT, and for
the random and oracle mappings to avoid interference. All
results are normalized to the average of the operating system
mapping.

C. Workloads

As workloads, we used the OpenMP implementation of
the NAS Parallel Benchmarks (NPB) [19], v3.3.1, and the
PARSEC benchmark suite [5], v3.0. For the evaluation in
the real machine, the evaluated application must present the
same memory address space across different executions. This
is required because the trace generated in Pin is used to guide
mapping decisions. For this reason, only the NAS applications,
except DC, were executed in the real machine. We executed all
NAS applications with one thread per virtual core (32 threads
in total). The number of threads for PARSEC applications was
also set to 32 threads, but the actual number of created threads
vary for each application.

Input sizes were chosen to provide similar total execution
times and feasible simulation time. Regarding NAS, bench-
marks BT, LU, SP and UA were executed using input size A in
the real machine, and input size W in Simics. Benchmarks CG,
EP, FT, IS and MG were executed using input size B in the real
machine, and input size A in Simics. DC was executed with
input size W in Simics. Regarding PARSEC, the input size

used in Canneal was simmedium, and all other applications
used simlarge.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance and energy
consumption improvements of our proposal, as well as its
overhead.

A. Performance Results

The results obtained in Simics and real machine can
be found in Fig. 2 and 3, respectively. The communication
patterns of a subset of our workloads are depicted in Fig. 4.
Since the absolute values of the contents of the communication
matrices vary significantly between the benchmarks, we nor-
malized each communication matrix to its own maximum value
and color the cells according to the amount of communication.
Darker cells indicate more communication between threads.

Some applications are influenced by both thread and data
mappings. One example of such an application is BT. The
communication pattern of BT, shown in Fig. 4a, highlights that
there are threads that communicate more with a small subgroup
of threads. When an application presents this characteristic,
mapping threads that communicate to nearby cores in the
memory hierarchy improves performance.

In the case of BT, most communication happens between
neighboring threads, which is very common on domain decom-
position parallel applications. Other communication patterns
also are suitable for mapping. For instance, the communication
between more distant threads in MG is more evident than in
the other applications. In Ferret, nearby threads form clusters.
Optimized mappings usually reduce cache misses and intercon-
nection traffic, as observed in BT. In MG, only interconnection
traffic was reduced.

For applications whose communication pattern is such that
threads present similar amounts of communication, thread
mapping is not able to improve performance. CG and Vips are
examples of this kind of application. This happens because the
communication can not be optimized, regardless of the thread
mapping. We can observe this in the communication pattern
of Vips, shown in Fig. 4d, where each pair of threads has
a similar amount of communication. On the other hand, the
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Fig. 4: Communication patterns that represent several appli-
cations. Axes represent thread IDs. Cells show the amount of
accesses to shared pages for each pair of threads. Darker cells
indicate more accesses.

performance of these applications may still be improved by
data mapping. Even if an application does not communicate
much among its threads, each thread will still need to access
its own private data, which can only be improved by data
mapping. CG presented the highest improvement in the real
machine, reducing execution time by 19.2%. It is important
to note that this does not mean that data mapping is more
important than thread mapping, because the effectiveness of
data mapping depends on thread mapping for shared pages.

The communication pattern of Swaptions is similar to the
one of Vips, not being influenced by thread mapping. Also,
the memory usage of Swaptions is low, such that almost all its
data fits into the caches and are thereby not affected by data
mapping. EP is a CPU-bound application [19] with almost no
communication between threads. Similarly to Swaptions, EP’s
data fits into the caches of the real machine, which makes
data mapping irrelevant. However, this is not the case of EP
in Simics due to the lower cache memory size, such that data
mapping improved the performance.

LAPT reduced the L2 and L3 MPKI in the real machine
by 7.0% and 18.2% on average. L3 MPKI had a higher
reduction than L2 MPKI due to the higher cache size, which
allows more caching of shared data. The interconnection traffic
was reduced by an average of 41.5%. Execution time was
reduced by 6.7% and 10.6% on average in the real machine
and Simics, respectively. The execution time impact tends to
be a fraction of the cache miss and the interconnection traffic
improvements, because the execution time is influenced by
several other factors besides the data accesses. Therefore, a
smaller reduction of execution time compared to cache misses
and interconnection traffic is expected.

The results obtained with LAPT are similar to the oracle
mapping, demonstrating its effectiveness. Occasionally, LAPT
performed better than the oracle mapping. This may happen
because we only consider the memory accesses to generate
the oracle mapping, while there are several other factors
that influence the performance. In most cases, it performed
significantly better than the random mapping. This shows that
the gains compared to the operating system are not due to the
unnecessary migrations introduced by the operating system,
but due to a more efficient usage of the machine resources.

B. Energy Consumption Results

Results of the total amount of processor and DRAM energy
consumption are shown in Fig. 5a and 5b. We can observe
that the behavior is similar to the execution time results, with
the biggest reductions for BT, CG, LU, SP and UA. The other
applications show no difference or a small reduction of energy
consumption. Additionally, we can observe that the DRAM
energy was reduced more than the processor energy, 11.3%
and 5.3% on average respectively, because a communication-
aware mapping has more influence on the memory than on
the processor. The results of energy per instruction, in Fig. 5c,
show that our mechanism not only saves energy by reducing
the executing time, but also by providing a more efficient
execution, which is an important goal for future exascale
architectures [31]. Energy per instruction was reduced by 4.4%
on average, and up to 12.5%, in SP.
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Fig. 5: Energy consumption results in the real machine, nor-
malized to the OS.
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Fig. 6: Performance overhead on the hardware and software
levels in Simics.

C. Performance Overhead

As explained in Section III-E3, LAPT introduces a per-
formance overhead on the hardware and software levels. We
show the overhead only for the machine simulated in Simics

BT CG EP FT IS LU MG SP UA Avg.
−20%
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−10%
−5%
0%
5%

10%
15%
20%

LAPT Marathe Azimi Autopin

Fig. 7: Performance comparison to related work in the real
machine, normalized to the OS.

because LAPT is not present in real machines. In the hardware
level, IS presented a high performance overhead because it
has a high TLB miss rate, introducing many memory accesses
to update the page table entries and communication matrix.
The applications FT, MG, Fluidanimate and Dedup present
high software overhead because they migrate a lot of pages
in relation to their execution time. The average performance
overhead on the hardware and software levels was only 0.36%
and 0.4%, respectively.

D. Comparison to Related Work

We compare LAPT to three previous techniques: Au-
topin [21], the Azimi thread mapping [2], and to the
Marathe [23] data mapping mechanism. Autopin was executed
with 5 mappings: the Oracle mapping, as well as 4 random
mappings. After a warmup time of 500 ms, every mapping was
evaluated for 150 ms. Then, the mapping that resulted in the
highest IPC was selected for the rest of the execution. Autopin
was directly executed on the real machine. We implemented
Azimi and Marathe in Pin, generating mapping information
that is fed to a runtime system during the execution of the
application in the real machine, as in Section IV-B. For Azimi,
the system simulated inside Pin consisted of 2 level caches,
each cache with 16 MByte, 16-way set associative, and a
MOESI cache coherence protocol. For Marathe, we used the
same cache configuration as for Azimi, and a long latency load
based profile, as described in [23].

Figure 7 shows the execution time of LAPT and the
related mechanisms. Values are normalized to the results of the
operating system. In CG, Marathe presented results similar to
LAPT. This happens because, as previously explained, CG is
an application only affected by data mapping. In applications
such as BT and SP, Marathe performed much worse due to the
lack of thread mapping. Autopin, in several executions, was
not able to select the Oracle mapping. Even when it correctly
selects the Oracle mapping, its performance improvement is
lower than ours because it needs to evaluate several other
mappings. Regarding Azimi, the incomplete communication
pattern that it detected resulted in sub-optimal mappings. The
results show that indirect or incomplete sources of commu-
nication information are not accurate to optimize memory
access locality. Also, mechanisms that perform both thread
and data mappings are able to achieve better improvements
than mechanisms that perform these mappings separately.
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VI. CONCLUSIONS AND FUTURE WORK

The memory hierarchies of current hardware architectures
impose different communication and memory access latencies,
which are important to be considered when mapping threads to
cores and pages to NUMA nodes, influencing the performance
and energy consumption. However, current architectures do
not provide accurate information to guide locality-aware thread
and data mapping policies. In this context, we proposed LAPT,
a mechanism that detects in hardware accurate communication
patterns between threads, and knowledge about which threads
access each page. On the software level, LAPT analyses
the detected information and performs locality-aware thread
and data mapping. LAPT represents an improvement to the
state-of-art because it performs both thread and data mapping
dynamically, and is based on accurate information about the
memory access behavior.

We evaluated LAPT in Simics/GEMS and on a real ma-
chine, achieving performance improvements of up to 35.4%
and 19.2% (10.6% and 6.7% on average). The performance
improvements were possible due to a reduction of cache
misses and traffic on the interconnections. L3 cache MPKI and
interconnection traffic were reduced by up 59.8% and 97.9%
(18.2% and 41.5% on average). Energy consumption was
reduced by up to 15.7% (5.3% on average). The extra circuit
area to implement LAPT in current architectures represents
less than 0.009% of the total area. The average performance
overhead on the hardware and software levels was only 0.36%
and 0.4%, respectively.

As future work, we intend to evaluate other thread mapping
algorithms. We also plan to extend LAPT to support parallel
applications with several processes that do not necessarily
share a common page table.
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