
A Generic Processing in Memory Cycle Accurate
Simulator under Hybrid Memory Cube Architecture

Geraldo F. Oliveira†, Paulo C. Santos†, Marco A. Z. Alves‡, Luigi Carro†
†Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

‡Department of Informatics – Federal University of Paraná – Curitiba, Brazil

Email: †{gfojunior, pcssjunior, carro}@inf.ufrgs.br ‡ mazalves@inf.ufpr.br

Abstract—PIM was one of the attempts created during the
1990s to try to mitigate the notorious memory wall problem,
where computational elements are added close, or ideally, inside
the memory devices. Nowadays, with the maturation of 3D inte-
gration technologies, a new landscape for novel PIM architectures
can be explored. To exploit this new scenario, researchers rely on
software simulators to navigate throughout the design evaluation
space. Today, most of the works targeting PIM implement an
in-house simulator to perform their experiments. However, this
methodology might hurt the overall productivity, and it can also
preclude replicability. In this paper, we show the development of a
precise, modular and parametrized PIM simulation environment.
Our simulator has been developed using the SystemC allowing
native parallel simulation. We have implemented the latest HMC
technical specifications, including all HMC instructions. The
primary contribution of our work lies on developing a user-
friendly interface to allow easy PIM architectures exploitation.
To evaluate our system, we have implemented a PIM module
that can perform vector operations with different operand sizes
using the proposed set of tools.

Index Terms—In-Memory Processing, Simulators, Hybrid
Memory Cube, 3D-Stacked

I. INTRODUCTION

During the last three decades, the target goal of computer

engineering was to improve computation resources. From

adding more logic elements and increasing chip frequency

in the later 1990s, to multiplying the number of cores in a

single chip during the early 2000s, the primary goal is still

the same: maximize the amount of work that can be done by

a processor or accelerator while reducing the execution time.

However, this metric is affected by a neglected component

so far - the memory system. Composed by a hierarchy of

modules that varies in technology, cost, power dissipation,

and size, a traditional memory system in a modern computer

environment has several levels of cache memories, Dynamic

Random Access Memory (DRAM) modules, and some non-

volatile storage (either Hard-Disk Drive (HDD), Solid-State

Drive (SSD), or a mix of both). This extensible number of

memory modules distributed throughout the system adds extra

latency to a given task [1].

To understand the impact that memory components impose

to a system, either regarding performance or energy con-

sumption, researchers rely on software simulators to navigate

throughout the design evaluation space. A lot of effort has

been made during the past years by the academia to build

memory simulators that could push state-of-the-art designs to

the next level of complexity. To list some, the DRAMSim2

simulator [2], a cycle-accurate Double Data Rate (DDR) mem-

ory simulator, is widely employed to estimate DDR2/3 speed

and power consumption; the Cacti [3] model is a popular tool

to estimate cache performance, area, and power consumption;

and VSSIM [4] is a new SSD simulator that can mimic today’s

SSD architectures.

Nowadays, with the advent of Big Data applications and

massive data processing workloads, the memory system has

become a major performance bottleneck [5]. Even though this

issue is becoming more problematic in modern workstations,

Wulf [6] has first foreseen the memory impact for future

systems in 1995, calling it the Memory Wall problem. The

authors observed that processor speed rises at a range of 75 %

per year, while memory speed increases by a factor of 7 %

from each generation. This enormous gap between memory

and CPU performance implies that the memory system would

be the primary source of performance slowdowns. These

days, to access main memory, the processor has to wait for

around 100 clock cycles to receive the requested data back

from memory. This scenario is even more problematic when

one considers multi-core and heterogeneous systems, where

multiple memory requests are being made simultaneously,

thus adding extra latency due to conflicted accesses. Besides

that, current DDR memories are not able to supply enough

bandwidth for High Performance Computing (HPC) and Big

Data applications [5].

Endeavoring to reduce the memory wall impact over large

workloads, several memory manufacturers have taken advan-

tage of 3D-stacked integration technology to implement 3D-

stacked memories that fit better to HPC applications. In a

3D stack environment, several layers of memory modules are

vertically connected by Through-Silicon Via (TSV). There-

fore, 3D technology improves data density and also increases

memory bandwidth. Also, 3D integration makes possible to

implement heterogeneous stacks, with layers of memories and

logic altogether in one single chip. These features help to

reduce the latency to access the memory by moving memory

controllers from CPU units into the memory device itself.

Some commercial 3D stacked memories are available in the

market nowadays, as Hybrid Memory Cube (HMC) [7], High

Bandwidth Memory (HBM) [8], and DiRAM4 [9].

Most important, the possibility to combine memory devices

and computation elements into one single chip renew the

978-1-5386-3437-0/17/$31.00 ©2017 IEEE978-1-5386-3437-0/17/$31.00 ©2017 IEEE 54

prospect to explore Processor-in-Memory (PIM) architectures

[10]. PIM, previously named Near-Data Processing (NDP),

was first designed to reduce application’s execution time,

where logic elements were placed inside DRAM modules

to explore their internal bandwidth [11]. However, besides

improving how the system would exploit memory bandwidth,

PIM approaches can potentially help reduce the overall mem-

ory access latency. Moreover, by adding logic modules closer

to the memory, the amount of data that needs to navigate

throughout the whole memory system can be reduced, there-

fore diminishing the total number of energy consumed by the

entire system - a key design constraint for large-scale data-

processing centers and embedded systems.

Since PIM has emerged again recently, simulating the

industry new memory devices or even testing novel PIM

mechanism is a common issue that researchers are facing now.

Today, most of the works that target PIM implement in-house

simulators to support their experiments ([12], [13], [14], [15]).

Two problems can be pointed out in this scenario of multiple

PIM simulators. First, a significant part of the research effort is

spent building the required simulation environment. Second,

it becomes difficult to reproduce another researchers’ work.

Another well-known problem related to PIM simulators is

how to measure three important aspects of embedded system

design: area, power, and energy consumption. Evaluating the

total design area is important to put boundaries to PIM

architectures. Also, dissipated power and energy consumption

are two key design parameters in both embedded and HPC

environments. Some approaches can be employed to obtain

those metrics. First, one could build their design model

using Hardware Description Language (HDL) and directly

extract the produced circuitry using synthesis tools [16]. Even

though the Register Transfer Level (RTL) model may produce

the most accurate result, its design flow is extremely time-

consuming. Another approach would be adopting tools as

McPat [17] to estimate the model outputs. However, it is

possible that the estimation tool may produce imprecise results

due the number of variables related to the matter [18].

In this work, we aim to build a generic Cycle Accurate

Parallel PIM Simulator (CLAPPS) that can be used to create

custom PIM architectures. Our framework has been devel-

oped using SystemC [19]. We have chosen to develop our

system using SystemC because it can be easily integrated

with already available simulation platforms, for example, with

the widely employed gem5 [20] simulator. Gem5 is a robust

and extensible system that can simulate most elements of

a computer system, including a number of instruction sets,

microarchitecture organizations, memory devices, interconnec-

tions, and communication protocols. Also, a SystemC module

can quickly produce a synthesizable RTL model. Moreover,

by implementing our simulation using SystemC, we were able

to simulate parallel behavior natively. In the current version,

we developed a HMC simulator targeting its latest technical

specifications [7], including all HMC instructions.

This paper is organized as follows. Section II enumerates

current HMC simulators that are related to our work. Sec-

tion III describes our framework infrastructures in details,

showing how we built the memory simulator and how we

expose the custom PIM layer to the final user. Section IV

depicts our memory simulation results and also presents a case

of study to the proposed interface. Finally, in Section V we

present future work.

II. RELATED WORK

Since the release of the first 3D-stacked memory, several

attempts to build a concise simulator have been made by

different researcher groups. However, it is not an easy task to

replicate those devices functionalities because their internals

is not available as open source information. Besides that,

most of the simulators presented in this section have been

implemented using sequential high-level programming lan-

guages. This methodology faces some issues since memory

modules have a highly-parallel behavior. For example, any

cycle-accurate simulator implemented using a non-parallel

language would need to check at every single clock single the

current state of all modules in the simulation, causing long

simulation times.

From all currently available HMC simulators, HMC-Sim

[21] is the most similar to our framework. This simulator

was developed using the C++ programming language and

provides a cycle-accurate memory simulation. Also, the simu-

lator provides a simple data-structure based interface. Thus

one could extend the already presented HMC instructions.

Even though their approach can assist one to investigate the

PIM capabilities of an HMC device, it has some limitations.

First, to implement custom instructions, the authors have taken

advantage of all opcodes that are not being used by the

current HMC specification. However, this methodology adds

a scalability problem to their interface due to two factors.

First, only seventy (the number of currently free opcodes) new

instructions can be created by the user, and second, as it had

happened from HMC specification 1.0 from 2.0 [7], new native

instructions are introduced by the HMC consortium, making

use of reserved opcodes. Finally, since shared library objects

were used in their framework to provided a friendly interface

to include the new HMC instructions, only Unix users can

take advantage of the HMC-Sim framework. One significant

difference from [21] and the presented work is that our PIM

interface allows the user to include new architectures into

HMC logic layer, rather than extending the already included

instructions.

CasHMC [22] is C++ HMC simulator that provides full

HMC capabilities. It is an offline simulator that uses an

external memory trace as its input generated by any processor

simulator. This simulator aims to implement most of the HMC

resources, as packet error detection, link flow control, and

HMC instructions, while providing to the user some output

files as performance summary, trace logs, and simulation

graphs. This approach can lead to longer simulation times

since the simulator needs to write information to four different

files in each clock since. Besides that, the simulation accuracy

can be profoundly affected by the fact that the simulation does

55

not run alongside the program execution. Finally, CasHMC

does not provide any PIM extension.

The SMC Simulation Environment (SMC-Sim) [23] is a

complete set of applications built inside the gem5 framework

targeting PIM architectures. The simulator makes use of the

already present memory modules, interconnection networks,

and CPU implementation to create the HMC device. Also,

it provides a software stack, including drivers and code an-

notation, to forward instructions to the processor core inside

the memory device. Even though SMC-Sim is a complete and

well-developed set of tools that can help the user to investigate

the advantages of 3D-stacked memories, it is possible to point

out some implementation choices that may limit performance

exploration. First, the PIM layer is located between the mem-

ory controllers and the interconnection layer. Therefore it is

not possible to extract all the bandwidth provided by the

memory because a significant portion of bandwidth contention

exists at this area. Second, although [23] has claimed to

validated their design latency and performance parameters

using a complete RTL design, the memory implementation

inside the gem5 simulator is based on correlations between

DDR and HMC architectures. This approach is valid in most

parts, but the HMC architecture presents some particular

characteristics that are not present in current DDR controllers,

like TSV access control. Finally, to obtain significant perfor-

mance from their simulator, the authors have employed some

structural modifications to the current HMC implementation,

for example, changing the maximum request size from 256B

to 512B, increasing the number of interconnection from 4 to

8, while duplicating its data width from 128b to 256b. Some

previous studies as [24] have shown that it is possible to extract

close to the theoretical HMC bandwidth using the already

presented design modules.

Finally, many in-house simulators have been employed

during the past few year to obtain information regards PIM

advantages. To illustrate, the author of [12] have used a trace-

based HMC simulator to implement different accelerators

that target vector operations, database, and deep learning

applications. [25] uses a Structural Simulation Toolkit (SST)

simulator to investigate how data and computational locality

impacts PIM design. [26] implements an analytic simulator

aiming to understand how HPC applications can benefit from

3D-stacked memories. [27] presents a set of methodologies

that can help reducing access latency of 3D memories. To

evaluate their proposal, the authors implemented a timing-

accurate simulator.

To summarize, today’s PIM simulators can be categorized

into three broad groups: trace-based, cycle-accurate, and ana-

lytical models. Analytical models provide faster simulations

but may not take into account important design metrics.

Trace-based models execute after the application had finished,

and therefore do not consider on-the-fly information. Cycle-

accurate models are the most precise but can lead to slow

simulations. Our simulator fits the latter category, but since

we have used a high-level hardware description language to

build our design, the simulation time is significantly lower than

Transceiver

16
lanes

16
lanes

16
lanes

16
lanesLinks

Vault 31
logic

B0 B1

B2 B3

B4 B5

B14 B15

T
S
V

Memory
partitions

(DRAM
layers)

...Logic
layer

Read
buffer

Write
buffer

DRAM sequencer

Vault controller
HMC vaults

PIM

Vault 0
logic

B0 B1

B2 B3

B4 B5

B14 B15

T
S
V

PIM

Vault 1
logic

B0 B1

B2 B3

B4 B5

B14 B15

T
S
V

PIM

rx
buffer

tx
buffer

Crossbar Switch

Link controller

Fig. 1: Overview of the proposed HMC and PIM simulator.

previous implementations. Also, our proposed framework has

been constructed using the RTL design flow, while following

the most current HMC specifications.

III. SIMULATOR MECHANISM

This section describes in details our simulation architecture

and discusses some design choices we have made during

the implementation process. To implement the simulator, we

have carefully studied the current Hybrid Memory Cube

(HMC) specification [7] and then elaborated each component

described in the documentation following the Register Transfer

Level (RTL) design flow chain. However, since we have

chosen to work with the SystemC programming language, the

total time spent building the simulator was reduced due to

the flexibility provided by the language. In the latest HMC

specification [7] the memory device is composed of four

high-speed serial links (up to 30 GB/s), a logic layer of 32

memory controllers (called vault controllers), and up to eight

layers of Dynamic Random Access Memory (DRAM) mem-

ories connected via Through-Silicon Via (TSV) to the vault

controller. Each vault controller can operate independently

upon 16 memory banks, and also can execute some atomic

arithmetic operations. A single HMC device can provide a

total bandwidth up to 320 GB/s.

A. Hybrid Memory Cube Simulator

Figure 1 depicts Cycle Accurate Parallel PIM Simulator

(CLAPPS) architecture. The simulator is divided into inde-

pendent three modules: transceiver, vault, and Processor-in-
Memory (PIM) Interface. The transceiver module is composed

of the packet encapsulator, serializer, link control, deserial-
izer, and switching network. All these modules are presented in

both tx (host to memory) and rx (memory to host) directions.

The vault module is constituted of data request buffer, request
command buffer, response control, memory controllers, TSV
controller, and memory banks. Finally, the PIM interface is

comprised of one data buffer and instruction queue.

When the host generates a new request to the main memory,

the simulation processing works as follows. First, the host out-

puts to the system the correspond HMC instruction, memory

56

16
lanes 16 16 16

128128128128

Packet
Encapsulator

serializer

buffer

serializer

buffer

serializer

buffer

serializer

buffer

serializer

buffer

serializer

buffer

serializer

buffer

serializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

deserializer

buffer

Se
rD

es

Link
Controller

Fig. 2: Transceiver host-to-memory overview.

address, and data blocks (maximum of 2 Kb), in the case of a

store or atomic instructions, activating the currently available

link controller. This controller will encapsulate the memory

request into packets, or FLITs, of 128b. A single FLIT is

divided into header and tail field of 64b each. The header

provides information about the requested command, the total

number of FLITs that constitutes the request, a unique tag that

identifies the request, and the target address. The tail provides

information to handle potential transaction failures, as retry

pointer and CRC checker. The maximum number of FLITs that

one single request can generate is seventeen. After the request

has been encapsulated, the serializer module transmits the

FLITs through high-speed lanes of 16 bits. The path that the

request will travel until arrive at the vault controller depends

upon the memory interleaving being adopted. Currently, we

have implemented the standard HMC interleaving: varying the

vault address first, followed by the bank, and the row. Figure 2

illustrates the tx datapath.

Second, once at the vault controller, the packet will be

decoded into simpler operations that the memory controller

can execute. Potentially, the number of memory controllers

can be equal to the number of banks available in one single

vault (up to 16 banks). To schedule the incoming request to one

free memory controller, we have used a simple policy based

on the bank address targeted by request, which also reduces

bank conflict. If there is already one memory controller that

has later worked on the same bank address of the request, the

request will be passed to this memory controller command

queue; otherwise, the memory controller will be chosen in

a round-robin fashion. After that, the memory controller

will be responsible for accessing the memory dies following

standard Double Data Rate (DDR) command sequence. We

have extracted DDR timing parameters from the work of [28].

The memory controller sends and receives data from/to the

memories dies through TSV. However, the number of TSV is

limited due to physic constraints. Thereby, there is only one

path from memory dies to memory controller per vault. The

host can request load/store command that ranges from 16 to

256B. However, only 32B of data can navigate through the

TSV, forcing the memory controller to split its requests over

TSV size multiples. Besides that, since there is more than

one bank that potentially will need to transmit/receive data

at the same time, the vault controller needs to manage the

TSV ownership. Therefore, we have implemented a fair round-

robin mechanism that allows each bank to send or received

data from/to the vault controller. Once the memory controller

has completed processing the request, the response packet is

generated and sent back to the transceiver layer. Figure 3

illustrates the implemented vault architecture.

Finally, according to the HMC specification, packet ordering

must be maintained during all operations. To cope with this

Request Decoder

BANK

TSV
Controller

Bank
Policy

Score-
board

T
S
V

BANK

BANK

BANK

BANK

BANK

BANK

BANK

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

FSM

Data
Rqst

Buffer

Oper.
Rqst

Buffer

Data
Rsp

Buffer

Oper.
Rsp

Buffer

Response
Controller

Rsp
Encoder

PIM
Interface

Instructi
ons

Data
Buffer

Re
qu

es
t

Response

Fig. 3: Vault Internals overview.

57

Vault 31
logic

PIM INTERFACE
Data

Queue

Custom
PIM Design

Instruction
Queue

Stat. Inst.

Data

PIM inst.

PIM
Stats

Fig. 4: Overview of the proposed custom PIM interface.

constraint, the link controller will compare the tag stored at the

top of its request queue with the output of all vault response

buffers. When a matching between request and response

occurs, the link controller will allow the respective vault to

send its packets, locking the rx switching network with the

required response addresses. Then the response FLITs travel

in the opposite flow of the request packet, passing through

the serializer and deserializer modules, until finally being

unpacked and delivered back to the host device. The rx process

in similar to the one described in Figure 2.

One of the main features of HMC devices is the native

support to execute read-modify-write operations with only one

memory request. The latest HMC specification defines arith-

metic, boolean, comparison, and bitwise atomic operations

of 8 and 16 bytes. To implement these operations, we have

included to the vault controller module a simple combinational

Arithmetic Logic Unit (ALU) that receives its operand from

the memory controllers buffer. Since all operations must be

executed atomically, the vault controller cannot perform any

other operation until the read-modify-write process has fin-

ished. Therefore, each vault controller only has a simple ALU

that controls are connected with only one memory controller.

According to [24], since HMC modules target primarily High

Performance Computing (HPC) applications, which most of

the time generate data requests with little spatial locality,

a close-row policy is employed. Also, different from DDR

memories that have large row buffer (8KB in traditional

memories), HMC memories have a maximum row buffer of

256B per vault. Thus, sub-sequential requests that reuse row

buffer data is unlike to happen. However, by following the

close-row policy, the performance of the atomic operations

is impaired, since a single atomic operation has to obey a

complete read-write request flow.

B. PIM Interface Protocol

Figure 4 depicts the proposed PIM user interface. A single

PIM request is seen by our simulator similar to a 16B write

request. To send instructions to the custom PIM architecture

inside the vault, the user needs to provide the reserved

command opcode PIM INSTRUCTION, the target memory

address, and the instruction to be executed by the PIM module.

The PIM instruction is related to the user PIM unique design

and its instruction set. Figure 5 illustrations the generated

request FLITs to this transaction. After the request has been

made, it will follow the same path of any regular HMC in-

struction. However, when it reaches the vault request decoder,

instead of treating the most significant 8B and least significant

8B from the current and subsequent FLIT as store data, it

will send these fields to the PIM Interface Instruction Queue.

Besides that, we have provided to the user basic load/store

instructions that send/gather data from the memory to the PIM

interface. In this way, the user does not need to modify the

already presented memory data path, thereby focusing only on

implementing the PIM design that would fit their needs.

Since the user can perform any operation inside their PIM

mechanism, data integrity becomes a potential problem to

CLAPPS. To illustrate, suppose that the user has decided to

implement a MIPS architecture into the PIM interface, and

then the following sequence of commands are sent to the

memory:

PIM INSTRUCTION 0x00 PIM RD32 $r5

PIM INSTRUCTION 0x00 add fp $f3, $f3, $r5

PIM INSTRUCTION 0x01 PIM WR32 $f3

RD32 0x01

In this sequence of instructions, the simulator will first

read 32B from memory and send the data to be stored in the

register five inside the MIPS processor. Then, the processor

will receive the add fp operation, a floating-point operation

that depended on the register $r5, and stores it in register f3.

After that, the processor will store the resulting computation

back at address 0x01 in the memory. Finally, a standard read

request will send right after the PIM store instruction to

the vault controller. However, the add fp instruction might

take a variable number of clock cycles to complete, and

then an additional time to store back the data. Therefore,

when the RD32 operation is executed, it will potentially

read old data from the 0x01 address. To cope with this

READ-AFTER-WRITE issue, we have implemented a simple

address scoreboard inside the vault request decoder. When

a PIM write request is received, the target address is placed

into the scoreboard, and all next incoming read requests that

target that same address will be delayed and released only

when the marked PIM store instruction be completed.

header

tail

pim instruction

pim instruction

128 64 63 0

128 64 63 0

Fig. 5: FLITs generated by a PIM instruction.

58

TABLE I: Baseline, HMC and PIM configurations.

Number of Vaults 32
Number of Links 4
Banks/Vault 16
Lane Bandwidth 30 Gbs
Memory Size 8 GB
Burst Width 8B
Number of DRAM Dies 8
RCD Latency 10.4 ns
DRAM Frequency 166 MHz
Row Buffer 32, 64, 128, 256B
Row Policy Close-row

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we will show the simulation potential

provided by our mechanism. All our experiments target the

entire vault and link bandwidth that we were able to extract

during simulation. To simplify the analysis, we have dived our

results in three categories: HMC Memory Validation, HMC

Atomic Requests, and PIM Implementation. Table I describes

all configured parameters used in all presented results. All

these parameters are parameterized and can be modified as

needed.

A. Memory Validation

Our first concern when building the simulator was to create

an architectural HMC design that would also work as a

simple memory simulator. However, since there is no public

information about the HMC internals or even about the DDRx

memories that composes the design, we have used as an

implementation guide published related work, in special the

work presented by [24].

First, we were interested in investigating if there was a

significant performance different when comparing read, write,

and read+write requests, as cited in [24]. Therefore, we have

run 8K read and write requests for various row buffer sizes.

All the requests match the row buffer size. Therefore we could

0

50

100

150

200

250

300

350

RE
AD

RE
AD

/W
RI

TE

W
RI

TE

RE
AD

RE
AD

/W
RI

TE

W
RI

TE

RE
AD

RE
AD

/W
RI

TE

W
RI

TE

RE
AD

RE
AD

/W
RI

TE

W
RI

TE

32B 64B 128B 256B

Ba
nd

w
id

th
 (G

B/
s)

TOTAL VAULT TOTAL LINK

Fig. 6: Link and Vault total bandwidth for sequential read and

write requests.

0

50

100

150

200

250

300

350

32 128 512 8K 1M

Ba
nd

w
id

th
 (G

B/
s)

32B 64B 128B 256B

Fig. 7: Vault total bandwidth for sequential read requests.

extract maximum performance from the current simulation.

We have used a 50% read/write ratio in our testbench. Besides

that, the request addresses were generated aiming to evict

link/vault/bank conflicts. Figure 6 shows the results of the

simulation. One can notice that read requests are faster than

write requests when considering the total vault bandwidth.

That happens because, from the DDR point of view, a read

request will read data from memory cells and then store in

the row buffer to be then, be read by the memory controller.

On the other hand, write requests will generate the same

process, and also it will need to write user data to the row

buffer, to then, be stored back into the memory cells. To

summarize, a write request is slower than a read request

because a write command generates a sequence of reading

and writing requests. However, this observation is not valid

for the links. In general, the maximum link bandwidth will be

achieved when a mix up of reading and writing request occurs.

That behavior is caused by the fact that the overhead to send

the read request to the memory or to send the acknowledge

packet back to the host, in the case of a write request. This

observation agrees with the one presented in [24].

Next, we have focused on obtaining the maximum vault

bandwidth that our simulator can provide. To do so, we

have simulated five different scenarios with 32 to 1M read

instructions while varying the row buffer size. This number

of requests was chosen because with 32 requests one could

measure the bandwidth in the case of only one request per

vault; with 512 requests one can understand the available

vault parallelism when all banks of all vaults receive a single

request; with 1M requests, one could saturate the memory

performance. 128 and 8K requests were used as intermediate

points. Figure 7 and Figure 8 show the vault and link perfor-

mance results respectively. It is evident that the biggest the

row buffer size, the better, the better the achieved bandwidth.

This result is explained because the vault controller works in

a pipeline fashion. Once a bank row buffer has been opened,

the only performance limitation would be receiving or sending

59

data from/to the bank unit through the TSV. However, since

DDRx memories response to requests in bursts of data, this

extra latency to access the TSV is reduced. The maximum

bandwidth CLAPPS could achieve 312 GB/s, with row buffer

size of 256B.

B. Atomic Requests

With our memory architecture validated, we needed to

experiment with the HMC atomic instructions. Since all atomic

instructions follow the same data path, they all have the same

execution latency. Therefore, all our simulation were based

on the add dual 8B instruction. Also, we have generated test

benches with random request addresses. Experimenting with

a random set of requests is important because HMC devices

were first designed to target applications with sparse data

accesses. Figure 9 and Figure 10 show our simulation results.

The results for the random-based requests were obtained with

three different set of inputs. Some observations can be pointed

out by these results. The first observation one could make is

that atomic operations provide significative lower bandwidth

than reading or writing requests. The bandwidth reduction

happens because a single atomic request will generate a

sequence of reading and write request. Besides that, only

one ALU is available to execute the instruction, therefore

limiting the vault parallelism. Secondly, it is possible to notice

that unpredicted access patterns do not severely prejudice the

bandwidth for random requests.

C. Case of Study: PIM Interface

To test the effectiveness and usability of our PIM Interface,

we included into CLAPPS, using the provided set of resources,

the PIM architecture developed by [29].

Reconfigurable Vector Unit (RVU) is a reconfigurable ac-

celerator that targets vector operations with varied operand

sizes. [29] as an improvement over the work proposed by

citeHIVE that aims to reduce unnecessary data movement

from memory to the accelerator device. One RVU device was

inferred inside each vault module. A single accelerator has

a set of 8 registers with up to 256B each, 32x64 integer,

0

20

40

60

80

100

120

140

160

180

32 128 512 8K 1M

Ba
nd

w
id

th
 (G

B/
s)

32B 64B 128B 256B

Fig. 8: Link total bandwidth for sequential read requests.

0

10

20

30

40

50

60

32 Requests 512 Requests 8K Requests 32K Requests

Ba
nd

w
id

th
 (G

B/
s)

Vaults Sequencial Vaults Randomic

Fig. 9: Vault total bandwidth for sequential and randomic

atomic requests.

and floating-points Functional Units (FUs), and operates at

the same frequency as the vault controller. Besides that, each

device can operate over a maximum of 256B at the time;

therefore all accelerators together being able to execute an

8KB vector operation at a given time.

According to [29], when the user configures their mecha-

nism to run over its maximum operation size, it will achieve

similar results to the work of [12]. Besides that, from all

benchmarks executed by [12], the vec-sum algorithm provided

a maximum bandwidth exploration from memory. Thereby,

since our evaluation metric is vaults and links total bandwidth,

we have decided to perform this same benchmark in our

experiment.

In the results provided by [12], the total vault bandwidth

obtained for a vec-sum operation was 315.9 GB/s. There is no

information in [12] regarding of the total link bandwidth. In

our simulation, we have obtained similar results. In total, the

vault performance was 317.8 GB/s, and the link performance

was 213.36 GB/s.

0

10

20

30

40

50

60

32 Requests 512 Requests 8K Requests 32K Requests

Ba
nd

w
id

th
 (G

B/
s)

Links Sequencial Links Randomic

Fig. 10: Link and Vault total bandwidth for sequential and

randomic atomic requests.

60

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented CLAPPS, a generic Cycle

Accurate Parallel Processing In Memory Simulator. Our sim-

ulator provides an interface to implement PIM architectures

targeting new 3D-stacked memories devices, in particular, the

HMC architecture. CLAPPS has been built using the SystemC

programming language since it can provide the flexibility of

a high-level programming language while generating a final

design description similar to the one an HDL language would

produce. We have demonstrated that our memory model can

achieve closer to the total amount of bandwidth cited by the

HMC consortium. Moreover, we have shown with a case of

study, how our PIM interface can be useful to the final user.

In future works, we aim to include statistics about power and

energy consumption into our design. Also, we are working on

integrating our simulator into the gem5[20] infrastructure.

REFERENCES

[1] P. C. Santos, M. A. Alves, M. Diener, L. Carro, and P. O. Navaux,
“Exploring cache size and core count tradeoffs in systems with reduced
memory access latency,” in Parallel, Distributed, and Network-Based
Processing (PDP), 2016 24th Euromicro International Conference on.
IEEE, 2016, pp. 388–392.

[2] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle ac-
curate memory system simulator,” IEEE Computer Architecture Letters,
vol. 10, no. 1, pp. 16–19, 2011.

[3] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power, and area model,” 2001.

[4] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil, S. Yoon, and J. Cha,
“Vssim: Virtual machine based ssd simulator,” in Mass Storage Systems
and Technologies (MSST), 2013 IEEE 29th Symposium on. IEEE, 2013,
pp. 1–14.

[5] M. Radulovic, D. Zivanovic, D. Ruiz, B. R. de Supinski, S. A. McKee,
P. Radojković, and E. Ayguadé, “Another trip to the wall: How much
will stacked dram benefit hpc?” in Proceedings of the 2015 International
Symposium on Memory Systems. ACM, 2015, pp. 31–36.

[6] “Hitting the memory wall: Implications of the obvious,” SIGARCH
Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar. 1995. [Online].
Available: http://doi.acm.org/10.1145/216585.216588

[7] Hybrid Memory Cube Consortium, “Hybrid memory cube specification
rev. 2.0,” 2013, http://www.hybridmemorycube.org/.

[8] D. U. L. et. al. S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s high-
bandwidth memory (hbm) stacked dram with effective microbump i/o
test methods using 29nm process and tsv,” in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb
2014, pp. 432–433.

[9] Tezzaron, “Diram4 - 3d memory,” 2015,
https://tezzaron.com/products/diram4-3d-memory/.

[10] S. Pugsley, J. Jestes, R. Balasubramonian et al., “Comparing Im-
plementations of Near-Data Computing with In-Memory MapReduce
Workloads,” IEEE Micro, vol. 34, no. 4, pp. 44–52, July 2014.

[11] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar 1997.

[12] M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro, “Large vector
extensions inside the HMC,” in Conf. on Design, Automation & Test in
Europe, 2016.

[13] L. Xu, D. P. Zhang, and N. Jayasena, “Scaling deep learning on multiple
in-memory processors,” 2015.

[14] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-enabled Instructions: A
Low-overhead, Locality-aware Processing-in-memory Architecture,” in
Int. Symp. on Computer Architecture, 2015.

[15] G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “Nim: An hmc-
based machine for neuron computation,” in International Symposium on
Applied Reconfigurable Computing. Springer, Cham, 2017, pp. 28–35.

[16] E. Azarkhish, “Memory hierarchy design for next generation scalable
many-core platforms,” Ph.D. dissertation, alma, 2016.

[17] S. Li, J. H. Ahn, R. D. Strong et al., “The McPAT Framework
for Multicore and Manycore Architectures: Simultaneously Modeling
Power, Area, and Timing,” Transactions on Architecture and Code
Optimization, vol. 10, no. 1, p. 5, 2013.

[18] S. L. Xi, H. Jacobson, P. Bose, G. Y. Wei, and D. Brooks, “Quantifying
sources of error in mcpat and potential impacts on architectural studies,”
in 2015 IEEE 21st International Symposium on High Performance
Computer Architecture (HPCA), Feb 2015, pp. 577–589.

[19] P. R. Panda, “Systemc-a modeling platform supporting multiple design
abstractions,” in System Synthesis, 2001. Proceedings. The 14th Inter-
national Symposium on. IEEE, 2001, pp. 75–80.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[21] J. D. Leidel and Y. Chen, “Hmc-sim-2.0: A simulation platform for
exploring custom memory cube operations,” in 2016 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
May 2016, pp. 621–630.

[22] D. I. Jeon and K. S. Chung, “Cashmc: A cycle-accurate simulator for
hybrid memory cube,” IEEE Computer Architecture Letters, vol. PP,
no. 99, pp. 1–1, 2016.

[23] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “A case for near memory
computation inside the smart memory cube,” 2016.

[24] P. Rosenfeld, “Performance exploration of the hybrid memory cube,”
Ph.D. dissertation, University of Maryland, 2014.

[25] G. Stelle, S. L. Olivier, D. Stark, A. F. Rodrigues, and K. S. Hemmert,
“Using a complementary emulation-simulation co-design approach to
assess application readiness for processing-in-memory systems,” in
Hardware-Software Co-Design for High Performance Computing (Co-
HPC), 2014. IEEE, 2014, pp. 64–71.

[26] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing. ACM, 2014,
pp. 85–98.

[27] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C. Bertolli,
S. Antao, J. Brunheroto, Y. Park, K. O’Brien et al., “Data access
optimization in a processing-in-memory system,” in Proceedings of the
12th ACM International Conference on Computing Frontiers. ACM,
2015, p. 6.

[28] D. Mathew, É. Zulian, S. Kannoth, M. Jung, C. Weis, and N. Wehn,
“A bank-wise dram power model for system simulations,” in Workshop
on: Rapid Simulation Simulation and Performance Evaluation: Methods
and Tools (RAPIDO), Stockholm, Sweden., 2017.

[29] P. C. Santos, G. F. Oliveira, D. G. Tome, M. A. Z. Alves, E. C. Almeida,
and L. Carro, “Operand size reconfiguration for big data processing
in memory,” in 2017 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2017.

61

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

