
Reconfigurable Vector Extensions inside the DRAM

Marco A. Z. Alves, Paulo C. Santos, Matthias Diener, Luigi Carro
Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

Email: {mazalves, pcssjunior, mdiener, carro}@inf.ufrgs.br

Abstract—Near-data processing is emerging as a response to
the low memory bandwidth and the high energy costs associated
with the data transfer between the processor and the main
memory. Proposals that move the execution of vector instruc-
tions to the DRAM device present good trade-offs in terms of
performance, energy consumption and area. Since these previous
proposals usually operate at the frequency of the DRAM, they lose
opportunities for improvements due to the long clock period of the
memory devices. In this paper, we propose Reconfigurable Vector
Extensions (RVX), which use Coarse-Grained Reconfigurable
Arrays (CGRAs) to execute vector instructions inside the DRAM.
Our mechanism reconfigures the functional units inside the
memory in order to combine them and thereby reduce the
operation time of the near-data instructions, fully leveraging the
potential of near-data processing in the main memory. Comparing
to previous near-data processing approaches that move vector
instructions to the DRAM, our proposal enables performance
gains of up to 31% and reduces the energy consumption by up
to 76% of the functional units inside the memory device.

Keywords—Near-data processing; Reducing data movement;
Vector instructions; Coarse-Grained Reconfigurable Array;

I. INTRODUCTION

Data movement between the main memory and the pro-
cessor is a major source of inefficiency in terms of perfor-
mance and energy consumption, especially for applications
that present a high spatial locality and low temporal locality
of memory accesses, such as stream applications. For these
applications, the memory hierarchy is very inefficient, because
large amounts of data are transferred from the memory into the
processor, exposing the bottleneck in the interconnection be-
tween them. Moreover, for such algorithms the cache hierarchy
represents a waste of resources. The reason for this waste is
that data that is brought into the caches is used only once and
removed as soon as possible to make room for new data.

In this scenario, multiple memory channels and multiple
memory controllers are being used together with dedicated
point-to-point interconnections in order to reduce the memory
bottleneck. Despite these advancements, memory accesses still
present a large challenge for the performance and energy
consumption of modern multi-core processors. In order to
reduce the data transfer impact on the performance and energy
consumption, the near-data processing concept is becoming
more important. Placing processing elements close to the data
aims to minimize data movement, performing the processing
in the most appropriate location of the memory hierarchy [1].

A possible approach to perform near-data processing is to
implement vector operations inside the DRAM devices [2], [3].
In this type of mechanism, several functional units are placed
inside the memory device, coupled to the sense amplifiers or

the row buffers in order to receive and execute operations
triggered by the processor. A typical row buffer size provides
8 KB of contiguous data from multiple devices, which can be
processed by a single vector instruction. Such a mechanism
is able to achieve high performance improvements compared
to a traditional multi-core system. However, the operations are
performed in the DRAM cycle, which is usually more than
10 times slower than the processor. For this reason, the gains
that can be achieved are limited.

In this paper, we propose Reconfigurable Vector Extensions
(RVX), which implement a large array of small Coarse-Grained
Reconfigurable Arrays (CGRAs) inside the DRAM device in
order to execute vector operations inside the main memory.
The processor works as a front-end, by fetching, decoding
and triggering the reconfiguration and the instructions to be
executed inside the RVX. The reconfiguration before the actual
execution increases the performance by coupling multiple
operations that are performed in the same DRAM clock cycle.

Moving the vector instructions to be executed inside the
memory outperforms traditional processor vector instructions
for algorithms that present high spatial locality and low tem-
poral locality, such as applications with a stream memory
access behavior. This is because such applications cannot
benefit from cache memories inside the processors to hide the
memory access latency and limitations of the interconnection.
By using RVX, these benefits from the near-data processing
are increased further. The main contributions of this paper can
be summarized as follows:

Multiple system designs: Several setups with varying num-
bers of functional units per CGRA and read and write ports
in the register bank are proposed and evaluated. Our mecha-
nism provides up to 31% (16% on average) of performance
improvement over the baseline system that performs near-data
processing inside the memory device by using 256 sets of
Functional Units (FUs) per device.

Different configuration options: We show that different
configuration options become available when increasing the
number of resources. Moreover, the experimental evaluation
shows that a reduction of the number of instructions sent to the
memory correlates with the number of available configurations.
Using the possible configurations, the number of instructions
triggered by the processor can be reduced by up to 63% (40%
on average) with our mechanism.

Fine-grain functional unit selection: Our mechanism recon-
figures a large array of small CGRAs to perform the same set
of operations. During the reconfiguration, it enables only the
necessary functional units. Our evaluation shows that this fine-
grain selection is capable of achieving high energy savings.

978-1-4673-7942-7/15/$31.00 c�2015 IEEE

Considering a perfect power gating of unused resources, RVX
consumes up to 76% (69% on average) less energy than the
baseline system which performs near-data vectorial processing.

II. RECONFIGURABLE VECTOR EXTENSIONS (RVX)

The main focus of this work is to improve the perfor-
mance of near-data processing approaches that perform vector
instruction inside the DRAM. Previous work [3] considers
a group of 256 functional units inside the memory device,
together with a register bank working on the same width
as the row buffer size (8 KB in our case). On the top of
this baseline, we propose Reconfigurable Vector Extensions
(RVX), which further improve the performance by configuring
multiple operations to be executed in the same cycle period
of the memory device. RVX can perform load and store
operations directly into the register bank. These registers are
used to provide data to the large array of small Coarse-Grained
Reconfigurable Arrays (CGRAs).

This section introduces RVX in detail, presenting the
processor and memory system modifications commonly re-
quired by near-data processing mechanisms that execute vector
instructions inside the memory. We also present the operations
of RVX. For an overview of existing CGRAs, refer e.g. to [4].

A. Execution Overview

Figure 1 depicts the full data-path of a vector instruction
sent from the Out-of-Order (OoO) processor to the DRAM.
The vector instructions are fetched and decoded by the pro-
cessor and then sent to the DRAM for execution, avoiding
expensive data transfers between the memory and processor.

We assume a memory module formed by 8 DRAM de-
vices, each device containing row buffers of 1 KB. With this
configuration, each set of row buffers contains 8 KB of data,
which corresponds to 2048 operands of 32 bits (integer or
single precision FP). In this way, each vector instruction can
use up to 3 internal registers (2 input, 1 output) to perform
up to 2048 operations of the same type (compared to e.g. 16
operations in AVX-512).

In order to use the vector instructions, the binary needs
to provide such instructions to make usage of the wider
operations. To avoid resource conflicts, a sequence of vector
instructions needs to be wrapped by a lock, to ensure exclusive
access for a specific thread. In addition, RVX requires the

DRAM
Memory

RVX

Processor
Core

Rename

Re-Order Buffer

Dispatch Execution Commit
Front
End

Memory
Order Buffer

Data Cache

Last Level Cache Directory
Memory
Controller

RVX Instructions/
Configurations

RVX Status

Fig. 1: Data-path illustration of an RVX instruction.

configuration bits to be sent by the processor to reconfigure its
internal operations. Instead of having one functional unit per
operand in the row buffer, we propose to use a small CGRA
per operand. Thus, an instruction to reconfigure the CGRAs
needs to be sent before the actual operation is performed. We
consider that all the CGRAs will be configured to perform the
same operations.

B. Reconfiguration Options

RVX integrates a large array of small CGRAs inside the
memory device. One array inside a device consists of 256
cells. Each cell operates over elements of 32 bits. Inside
one cell, there is a CGRA that can have multiple functional
units. During a normal operation, these functional units are
reconfigured in order to act as a single processing element.
RVX is designed to select inside the functional units only
the specific operation that will be performed. Thus, RVX is
capable of disabling the unused logic through power gating [5].

The number of configuration options available depends
on the number of functional units (per CGRA) as well as
the number of read and write ports in the register bank of
our mechanism. In this paper, we propose 5 system designs,
varying the number of functional units (between 1, 2 and 3),
the number of read ports (between 2, 3 and 4), and write
ports (between 1 and 2) in the register bank. These design
options present a trade-off between the available resources
(area usage) and the performance of RVX. Figure 2 illustrates
9 configuration options enabled by each modification in the
number of FUs and read/write ports. RVX supports all of these
configurations, but it is not limited to those. For each system
design with more resources available, the configurations avail-
able using a simpler design are still supported, however, more
configuration possibilities become available.

C. Processor Modifications

In the processor, we require an Instruction Set Architecture
(ISA) extension to provide the vector instructions. These
instructions use a new register bank inside the DRAM to
perform operations. Such instructions pass through the pipeline
in the same way as a memory load operation. The instructions
that do not require memory addresses, such as the RVX lock
and unlock operations, will bypass the Address Generation
Unit (AGU) and wait to be transmitted inside the Memory
Order Buffer (MOB).

The vector instructions are sent to the MOB to be delivered
to the memory subsystem. These instructions wait inside the
MOB for an answer from the memory subsystem, which
returns the status of the operation as successful or raises
exceptions. The processor uses this status to control execution
flags, such as overflow and not-a-number. The new instructions
that perform loads and stores work with virtual addresses and
therefore have to be translated by the Translation Look-aside
Buffer (TLB) and checked for correct permissions to access the
given memory address range. After passing through the TLB,
the requests follow the cache memory hierarchy, bypassing the
memory caches. The cache directory needs to be changed as
well, to ensure a write-back and invalidation of all the modified
data in the range of addresses at which the specific vector
instruction will operate.

Op.Op.

Res.

FU

2 FUs - 2 Read - 1 Write
(RVX-2FU-2R-1W)

1 FUs - 2 Read - 1 Write
(Baseline)

2 FUs - 3 Read - 1 Write
(RVX-2FU-3R-1W)

2 FUs - 3 Read - 2 Write
(RVX-2FU-3R-2W)

Op.

FU

Op.

Res.

FU

Op.

2 FUs - 4 Read - 2 Write
(RVX-2FU-4R-2W)

Op.Op.

Res.

FU

Op.Op.

Res.

FU

3 FUs - 4 Read - 2 Write
(RVX-3FU-4R-2W)

Op.Op.

FU

Op.Op.

FU

FU

Res.

Op.

FU

Op.

FU

Op.

FU

Res.

Op.

Op.

FU

Op.

Res.

FU

FU

Res.

FU

Op.Op.
Op.Op.

Res.

FU

Op.

Res.

FU

Op.Op.

FU

Op.Op.

FU

FU
Res.

Res.

Fig. 2: Illustration of different configurations supported by the RVX FUs.

D. Memory Controller Modifications

In RVX, the memory controller is responsible for handling
the instructions and sending them to the DRAM in-order. This
reduces the logic required inside the DRAM. Furthermore, the
vector instructions use the internal buffers inside the memory
controller to wait until they can be executed.

When the memory controller receives the lock operation,
it has to reserve the mechanism inside the DRAM to operate
only for the thread that requested the lock. In case the memory
is already locked, the lock instruction from the requester
waits until the DRAM gets unlocked. Locking the mechanisms
avoids that one thread modifies the content of registers that
are being used by a different thread. Normal memory access
requests (both reads and writes) can still be serviced while the
mechanism is locked, such that other threads that do not use
our instructions can continue to execute.

Once our mechanism is locked, the memory controller can
start to issue instructions to be executed by our mechanism
inside the DRAM. The memory controller issues both the
reconfiguration and the instructions to be executed by the RVX.

E. DRAM Modifications

To perform vector instructions inside the DRAM, we
require two main pieces of logic inside the Double Data Rate
(DDR) device, a register bank and the RVX. Figure 3 illustrates
our mechanism inside a DRAM device. This figure presents
a DDR 3 x8 device, even though our mechanism can be
easily adapted for different DDRx device layouts (for example,
different row bank sizes and data bursts, among others).

The additional register bank inside the DRAM device can
be used to store full row buffers from any bank inside the
device. Each register is capable of handling an entire row
buffer (8,192 bits per device). Thus, open row signals can be
issued to different banks to achieve a higher performance. RVX
performs operations sequentially. However, we adopted a loop
unrolling technique in order to expose the loads and operations

Memory Module

Memory Device

Bank 0

8,192

Bank 1

8,192

Bank 7

8,192

I/O gating
DM mask logic

...

Register Bank
8x 8,192

8,192 8,192

RVX
Coarse Grain

Reconfigurable Array

Address

I/O

RVX

RVX
Config.
Opcode

Address

Row

Column

W.En
ColumnI/O

Interface

Data

RVX Status

Fig. 3: DDR 3 x8 devices showing the modifications required
by our RVX mechanism. All sizes are given in bits.

in such a way that using the register bank to store the data, the
memory controller can issue the row access signals as early as
possible, making better use of the bank parallelism inside the
DRAM.

The vector instructions are executed in-order, however,
RVX acts as a restricted data-flow processor. A given operation
may start as soon as the registers are ready. To support that
data-flow, we provide a flag associated with each register that
indicates if the operand is ready. Each vector instruction needs
to erase this flag for its destination register, and re-enable it
whenever the instruction becomes ready. This system enables
the DRAM to open rows from different banks in parallel, and
also ensures that once a vector instruction requires operands

TABLE I: Baseline and RVX system configuration.

OoO execution cores: 2 GHz; 16 cores; Front-end 2-wide;
14 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit);
24-entry fetch buffer, 32-entry decode buffer, 32-entry ROB;
2-alu, 1-mul. and 1-div. integer units (1-3-20 cycle); AVX-512 capable;
1-alu, 1-mul. and 1-div. floating-point units (5-5-20 cycle);
1-load and 1-store functional units (1-1 cycle); 10 R/W MOB entries;

Branch predictor: 1 branch per fetch; 8 parallel in-flight branches;
4 K-entry 4-way set-associative, LRU policy BTB;
Two-Level PAs predictor; 16 K-entry BHT, 2-bits prediction;

L1 data + inst. cache: 32 KB, 8-way, 2-cycle; 64 bytes line; LRU policy;
MSHR entries: 8-request, 8-write-back, 1-prefetch; Stride Prefetcher;

L2 cache: 1 MB shared for every 2 cores, 16-way, 4-cycle; 64 bytes line;
LRU policy; MSHR entries: 16-request, 8-write-back, 2-prefetch;
Inclusive LLC; MOESI coherence protocol; Stream Prefetcher;

Memory controller and interconnection: Bi-directional ring;
Single memory channel; On-chip DRAM controller, Open-row first policy;

DRAM module: DDR3-1333, 8 burst length at 3:1 bus frequency ratio;
8 GB; Device@166 MHz, 8 DRAM banks, 1 KB per device row buffer;
CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

RVX processing logic: Operation freq.: 166 MHz; Array of 256 CGRAs;
Each CGRA with 2 or 3 sets of functional units (int. + fp);
Latency (ns): 0.5-alu, 1.5-mul. and 10-div. integer units;
Latency (ns): 2.5-alu, 2.5-mul. and 10-div. floating-point units;
1 register bank / device, with 16 registers of 8,192 bits each;

that are not ready yet, execution will stall.

Upon the source registers being ready, the functional
units inside the array of CGRAs operate in several steps to
process the entire row buffer. All functional units operate at
the same frequency as the DRAM device. After completion,
every RVX instruction sends a status to the processor. These
acknowledgment signals provide important information for
the processor regarding the status of each operation, such as
overflow, division-by-zero and other exceptions. For instance,
in the Intel AVX instruction set, 17 bits are enough to provide
the information regarding the operation status [6]. During
our mechanism evaluation, we considered an acknowledgment
of 64 bits in order to correctly simulate the impact of this
transmission on the final performance.

III. EXPERIMENTAL EVALUATION OF RVX

This section presents our evaluation of RVX, detailing the
simulation environment, the application kernels, as well as the
performance and energy consumption results of RVX.

A. Configuration Parameters and Baseline

To evaluate our RVX mechanism, we used an in-house
cycle accurate microarchitecture simulator. [7], [8]. The simu-
lation parameters are inspired by Intel’s Atom OoO processor
with the Silvermont microarchitecture [9]. Table I shows the
simulation parameters used for our tests. As the baseline
for our comparisons, we use a previous near-data computing
approach [3] which implements vector instructions inside
the memory device (described in Section II). Additionally,
performance comparisons for a multi-core processor without
near-data processing are presented as well.

B. Application Kernels

For our evaluations, we used four different floating point
applications kernels: A vector sum using three vectors of
64 MB each. A stencil with 5-points over a matrix of 64 MB,
adding up the 5 neighboring elements, multiplying the result by
two and then storing every result in an output matrix. A matrix
multiplication using three square matrices (2 source and 1
result) of 9 MB each. A data search application that searches
a vector of 64 MB for a specific value. To make the amount
of operations comparable between different mechanisms, we
always put the searched value in the last element of the vector.
All applications use floating-point operands.

The vector sum and data search applications represent the
most favorable case for near-data computing since they do
not reuse data and only perform a stream over contiguous
vector elements. The stencil benchmark presents some data
reuse and can make use of the cache memories. The matrix
multiplication application has a high amount of data reuse, thus
benefiting greatly from the cache memories. However, for the
RVX mechanism, the most favorable applications are those that
perform a sequence of operations over the same data. It means
that the matrix multiplication and the stencil computation
represent the most favorable case for our mechanism.

C. Performance Results

Figure 4 presents the number of arithmetic instructions
sent to the RVX for the different systems. As expected, an
increasing number of functional units and read/write ports
in the register file enables more arithmetic operations to be
executed by a single RVX instruction, reducing thus the total
number of instructions sent to the RVX. Those applications
with a small number of operations over data, such as vector
sum and data search, will have an overhead of reconfiguration
bits that need to be sent by the processor. However, such a
reconfiguration overhead can be hidden by the memory load
latency, where the functional units can be configured while
data are fetched.

Figure 5 evaluates the performance gains when the number
of resources inside the RVX increases. The results show
that vector sum and data search require a higher number of
read ports in the register file to perform parallel operations.
Moreover, we show that despite the reconfiguration time, these
applications can benefit from our technique, where vector sum
achieved 6% improvements and data search 14%. As expected,
the stencil and matrix multiplication benefited more from
the reconfiguration, achieving 15% and 31% of performance
gains respectively. This is because of the higher amount of
operations over the same data. These performance results also
give us insight regarding a project decision considering that our
mechanism could be implemented using a variable number of
functional units and read/write ports in the register bank.

Figure 6 presents a comparison of a multi-core system
executing the applications with 16 threads. This system is
compared to the near-data processing performed by vector
instructions and RVX with different design alternatives. With
these results, we can observe that despite the high gains
achieved by the near-data processing with vector instructions,
further gains can be obtained by using RVX.

0%

20%

40%

60%

80%

100%

120%

140%

Vector
Sum

Stencil Data
Search

Matrix
Mul.

Instructions Reconfig.

(a) RVX-2FU-2R-1W

Vector
Sum

Stencil Data
Search

Matrix
Mul.

(b) RVX-2FU-3R-1W

Vector
Sum

Stencil Data
Search

Matrix
Mul.

(c) RVX-2FU-3R-2W

Vector
Sum

Stencil Data
Search

Matrix
Mul.

(d) RVX-2FU-4R-2W

Vector
Sum

Stencil Data
Search

Matrix
Mul.

(e) RVX-3FU-4R-2W

Fig. 4: Number of arithmetic instructions and configurations performed for each system compared to the baseline.

0%

5%

10%

15%

20%

25%

30%

35%

Vector
Sum

Stencil Data
Search

Matrix
Mul.

Pe
rf
o
rm

an
ce
 G
ai
n
s

RVX2FU2R1W RVX2FU3R1W RVX2FU3R2W
RVX2FU4R2W RVX3FU4R2W

Fig. 5: Performance improvements in percent compared to the
baseline without reconfigurable functional units.

0
20
40
60
80
100
120
140
160
180

Vector
Sum

Stencil Data
Search

Matrix
Mul.

Sp
ee
d
u
p

NearData Vec. RVX2FU2R1W RVX2FU3R1W
RVX2FU3R2W RVX2FU4R2W RVX3FU4R2W

Fig. 6: Overall speedup (in ×) compared to the 16 core
processor system.

D. Energy Results

In order to obtain energy results for our mechanism, we
describe the functional units in the VHDL language, modeled
with power gating techniques. The descriptions were syn-
thesized using the Cadence RTL Compiler tool in order to
extract the power components. To obtain the energy of the
baseline system (near-data processing with vector instructions),
we considered the same functional unit power consumption.
However, the baseline is not capable of disabling the unused

functional units during the instructions’ execution. Since RVX
turns off the unused parts of functional units, it is capable
of reducing the energy consumption by 64% for vector sum,
71% for stencil computation, 64% for data search and 76%
for matrix multiplication compared to previous work.

IV. RELATED WORK

Since off-chip data movement is a major bottleneck for
computer systems [10], the main goal of near-data processing
is to increase performance and energy efficiency by reducing
the data transfer between the processor and DRAM. The Intel-
ligent RAM (IRAM) [11] aims to increase the accessible data
width by implementing more memory ports and data buses.
To efficiently use this large bandwidth, the authors propose to
implement a vector processor inside the DRAM module, where
this processor is able to access the vector operands directly
from RAM through the extra ports. IRAM extrapolates the
system with up to 16 ports of 1024 bits, claiming that it is
possible to accelerate the execution and simultaneously reduce
energy consumption. However, IRAM requires a large amount
of logic, as well as extra buses and memory ports, and could
become obsolete for faster processors [12].

Elliot et al. [2] present the Computational-RAM (C-RAM),
where multiple functional units are inserted together with the
sense amplifiers, computing at the bit level. This implemen-
tation works in a bit serial fashion, requiring that data be
stored orthogonally to the memory rows. In this way, a radical
change in the memory organization is required. The DIVA
proposal [13], [14] integrates a 32 bit RISC-like processor
within the memory device. Despite the reduced communication
between main memory and the host processor provided by this
approach, the control overhead is substantial.

In [15], the authors present the Near Memory Processor
(NMP), implementing an in-order 2-issue wide co-processor
between processor/cache and main memory. Although this
approach is limited by memory controller bandwidth, NMP has
its own local large width scratchpad memory which enables
data accesses with a high bandwidth. Despite the higher
performance, the data width managed between main memory
and NMP is limited to the original memory bus, maintaining
compatibility with current architectures. The performance is
also limited by the fact that the proposed architecture must fill

the scratchpad memory before processing, an operation which
depends on the memory and interconnection performance,
which are well-known bottlenecks. Moreover, the programmer
must carefully control the content of the scratchpad memory.

Taking advantage of die-stack technology, Zhu et al. [16]
present a 3D-DRAM customized logic layer capable of
accelerating application-specific data intensive computation.
FFT and SpGEMM Application Specific Integrated Circuits
(ASICs) were implemented as a 3D-DRAM layer with commu-
nication using Through-Silicon Via (TSV). The authors claim
bandwidths of up to 668.4 GB/s when 16 banks and 1024
TSVs per bank are used to connect the proposed ASIC to the
row buffers. The proposed mechanism does not support general
purpose computations, which is the focus of our work.

In [17], the authors present a solution where CGRAs are
implemented on top of the memory devices using TSV tech-
nology. This approach accesses the data from global I/O (that
is, the bus after the DDR I/O gating) using TSV, being able to
execute instructions over these data. The benefits emerge from
the efficient data transmission system from memory devices to
the proposed buffers and CGRA. However, this approach does
not use the full data bandwidth inside the DRAM devices.
Pugsley et al. [18] insert processor cores in the DRAM
memory module, one low-power quad-core processor for each
DRAM device, with the logic outside the DDR device. Similar
to [17], each processor can access the data width present at
columns of each DRAM device, which represents less than 1%
of the row buffer size. This small bandwidth limits the amount
of data that can processed in parallel. This work provides a
comparison with multi-core processors, presenting significant
performance gains and energy savings.

Our proposal resembles two previous mechanisms [2], [17].
Compared to previous integrations of functional units inside
the DRAM [2], we present a balanced design, reducing the
number of processing elements by coupling the functional units
to the row buffers. We also introduce a register file which
enables a parallelism between the memory load and store and
the RVX operations. Compared to the related work which uses
CGRA, we propose the usage of such functional units with a
larger parallelism and coordinated by the processor to execute
vector instructions. Moreover, our proposal is able to select
only the configured operations inside the functional units, this
enables the mechanism to power gate unused logic.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the Reconfigurable Vector
Extensions (RVX), a new approach to perform near-data pro-
cessing that implements a large array of small Coarse-Grained
Reconfigurable Arrays (CGRAs). RVX is capable of achieving
high performance gains by better utilization of the DRAM
clock cycle period. Our mechanism reconfigures the functional
units inside a CGRA in order to execute multiple operations in
a single memory device cycle. Our mechanism also reduces the
energy consumption by selecting the specific logic necessary
to execute a given instruction, power gating the unused logic.

RVX executes applications up to 174 times faster than a 16-
core processor. Our mechanism is up to 31% faster compared
to a near-data processing approach without reconfiguration.
Energy consumption results show that our mechanism is able
to achieve high savings compared to the baseline. For the

future, we plan to implement RVX in a Hybrid Memory
Cube (HMC) environment, which presents different trade-offs
between area and energy consumption. We will also evaluate
more benchmarks with different memory access behaviors.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of CNPq.

REFERENCES

[1] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-data processing: Insights from a micro-
46 workshop,” IEEE Micro, vol. 34, no. 4, pp. 36–42, July 2014.

[2] D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and R. McKenzie,
“Computational ram: Implementing processors in memory,” Design and
Test of Computers, vol. 16, 1999.

[3] M. A. Z. Alves, P. C. Santos, F. B. Moreira, M. Diener, and P. O. A.
Navaux, “Saving memory movements through vector processing in
the dram,” in Int. Conf. on Compilers, Architectures and Synthesis of
Embedded Systems, 2015.

[4] Y. Kim, I. Park, K. Choi, and Y. Paek, “Power-conscious configuration
cache structure and code mapping for coarse-grained reconfigurable
architecture,” in Int. Symp. on Low power electronics and design, 2006.

[5] Y. Saito, T. Shirai, T. Nakamura, T. Nishimura, Y. Hasegawa, S. Tsut-
sumi, T. Kashima, M. Nakata, S. Takeda, K. Usami, and H. Amano,
“Leakage power reduction for coarse grained dynamically reconfig-
urable processor arrays with fine grained power gating technique,” in
Int. Conf. on Engineering and Computer Education, 2008.

[6] Intel, “Intel Xeon Phi Coprocessor Instruction Set Architecture Refer-
ence Manual,” Tech. Rep., 2012.

[7] M. Alves, “Increasing energy efficiency of processor caches via line
usage predictors,” Ph.D. dissertation, Universidade Federal do Rio
Grande do Sul, May 2014.

[8] M. A. Z. Alves, M. Diener, F. B. Moreira, C. Villavieja, and P. O. A.
Navaux, “Sinuca: A validated micro-architecture simulator,” in High
Performance Computation Conference, 2015.

[9] Intel, “Intel Atom Processor E3800 Product Family,” Tech. Rep., 2015.
[10] D. P. Zhang, N. Jayasena, A. Lyashevsky et al., “A new perspective on

processing-in-memory architecture design,” in Workshop on Memory
Systems Performance and Correctness, 2013, p. 71–73.

[11] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent ram,”
IEEE Micro, vol. 17, no. 2, pp. 34–44, Mar 1997.

[12] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer, and H. Wang,
“Evaluation of existing architectures in iram systems,” in Workshop on
Mixing Logic and DRAM, 1997.

[13] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss,
J. Granacki, J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca,
“The architecture of the diva processing-in-memory chip,” in Int. Conf.
on Supercomputing, 2002.

[14] T.-J. Kwon, J.-S. Moon, J. Sondeen, and J. Draper, “A 0.18 µm
implementation of a floating-point unit for a processing-in-memory
system,” in Int. Symposium on Circuits and Systems, 2004.

[15] M. Wei, M. Snir, J. Torrellas, and R. B. Tremaine, “A near-memory
processor for vector, streaming and bit manipulation workloads,” Uni-
versity of Illinois at Urbana-Champaign, Dept. of Computer Science,
Tech. Rep., 02 2005.

[16] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi,
and F. Franchetti, “A 3d-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in Int. 3D Systems
Integration Conf., 2013.

[17] A. Farmahini-Farahani, J. Ahn, K. Compton, and N. Kim, “Drama:
An architecture for accelerated processing near memory,” Computer
Architecture Letters, no. 99, 2014.

[18] S. Pugsley, J. Jestes, R. Balasubramonian, V. Srinivasan, A. Buyuk-
tosunoglu, A. Davis, and F. Li, “Comparing implementations of near-
data computing with in-memory mapreduce workloads,” IEEE Micro,
vol. 34, no. 4, pp. 44–52, July 2014.

