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Abstract—One of the main challenges for computer architects
is how to hide the high average memory access latency from
the processor. In this context, Hybrid Memory Cubes (HMCs)
can provide substantial energy and bandwidth improvements
compared to traditional memory organizations. However, it is
not clear how this reduced average memory access latency will
impact the LLC. For applications with high cache miss ratios, the
latency to search for the data inside the cache memory will impact
negatively on the performance. The importance of this overhead
depends on the memory access latency. In this paper, we present
an evaluation of the L3 cache importance on a high performance
processor using HMC also exploring chip area tradeoffs between
the cache size and number of processor cores. We show that the
high bandwidth provided by HMC memories can eliminate the
need for L3 caches, removing hardware and making room for
more processing power. Our evaluations show that performance
increased 37% and the EDP improved 12% while maintaining the
same original chip area in a wide range of parallel applications,
when compared to DDR3 memories.
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I. INTRODUCTION

Multi-core architectures are a reality in modern embedded
and high performance systems. With the advance of manu-
facturing techniques, the number of processors is likely to
increase from the current tens of cores to several hundreds of
cores or more [1]. Following this trend, we can predict that the
pressure on the memory sub-system will keep on increasing.
For this reason, the well-known memory wall problem [2], [3]
has been growing in modern parallel computers.

Different solutions have emerged over the last years that
aim to circumvent the traditional DDR memories limits, such
as the low bandwidth and high latency. The increase on the
number of channels and memory controllers aims to better
expose the bank parallelism, reducing thus the average memory
access latency. Such techniques require more data buses to
interconnect the memory controllers to the multiple memory
modules. On the other hand, the processor architecture also
included bigger cache memories with complex hierarchies in
order to hide the memory access latency from the cores. Thus,
data requests from the processor will trigger cache searches,
which cost a certain number of cycles. During this search, in
case the data is present in the cache, the request is serviced. In
case the data is not located in the cache, the request needs to
be forwarded to the next memory level, which can be another
cache level or the main memory. Such data requests normally
are performed sequentially between the levels in order avoid
unnecessary searches increasing the energy efficiency.

However, considering the new Hybrid Memory Cube

(HMC) memories [4], it is not clear if the ever increasing
cache memories still benefit the system performance. The
HMC memories promise high data bandwidths at a low average
latency due to their aggressive parallelism [5]. According to
the latest designs available, this new memory architecture
is formed by 32 vaults, each consisting of 8 or 16 DRAM
banks [4], [6]. The memory banks are split into multiple stacks
and connected to the logic layer using Through-Silicon Vias
(TSVs) [7]. The logic layer provides computational capabilities
(atomic update instructions) and also substitutes the memory
controller from the processor, as it is responsible for handling
the requests and for sending the DRAM signals to the banks.

The memory footprint of applications is continuously in-
creasing [8]. However, most of the data is reused only far in the
future, or not reused at all. Therefore, the large cache memories
closer to the main memory may not improve the performance.
The reason is that on every cache hit, the cache memories help
to improve the performance, but during cache misses, the extra
cycles required to search for the data inside the cache ends up
hurting the performance. For high latency main memories, the
benefits of large caches hide this small overhead. However,
if the main memory has a reduced latency, the cache benefits
may not be worth the extra overhead.

In this scenario, we revisit the cache memories in this paper
to understand the impact of the HMC memories on the cache
hierarchy. We focus on the L3 cache, due to its large area usage
and high energy consumption. We explore the area tradeoffs
between L3 cache and number of cores per chip, in order to
evaluate the performance impact of exchanging the cache size
for a larger core count. To the best of our knowledge, our work
is the first to explore the HMC benefits for the cache memory
subsystem, analyzing the tradeoffs between the cache size and
the core counts inside the chip.

In our simulations, we found that HMC-based systems can
reduce the average memory access latency by 65% compared
to DDR3 memories with 4 channels. This latency reduction
using HMC memories enabled us to remove the L3 cache from
the system, losing on average only 7% of performance. When
removing this cache and adding more cores maintaining the
same chip area, we observed an average speedup of 37% while
decreasing the Energy Delay Product (EDP) by 12%.

II. IMPACT OF HMC ON CACHE MEMORIES

The memory footprints of applications increases as the
complexity of the problems being solved rises [9]. Although
most applications reuse data along their execution, in case the
data is reused after the cache already evicted the respective
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Fig. 1: L3 cache hit ratio comparing two hypothetical caches.

data, this reuse will not benefit from the cache and instead will
suffer a penalty due to higher latency from accessing multiple
cache levels before the main memory.

A. Impact of the L3 Cache Size on HMC

To understand the memory access behavior of the applica-
tions present in traditional parallel benchmark suites, Figure 1
presents the L3 hit ratio with different cache sizes. The
experiment is based on a Sandy Bridge machine with 8 cores
and compares a realistic multi-banked 20 MB L3 cache to a
hypothetical 2 GB L3 that is able to accommodate the memory
footprint of all applications. In both systems, the L1 and L2
caches remain at their original parameters and HMC is used
as the main memory. The simulation and the workload details
will be presented in Section IV.

The results with 2 GB L3 cache show that on average,
cache lines on L3 receive between 5 and 6 accesses during
the program execution, resulting in a cache hit ratio of 80%.
It means that even using a huge cache memory, on average
20% of the L3 cache requests require main memory accesses
due to a cold cache effect. For the 20 MB L3 cache, on average
the cache lines received less than 2 accesses, where the first
caused the cache miss and the second represents the reuse,
achieving a hit ratio of only 36%. These results demonstrate
that for a realistic cache hierarchy, more than half of the L3
requests require main memory accesses, and for those cache
misses, the cache search represents only an overhead before
the main memory services the request.

The influence of the cache search latency overhead on the
final performance depends mainly on two factors, the number
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Fig. 2: Average ready latency for DDR3 and HMC memories.

of cache accesses with the respective cache miss ratio and also
the main memory latency. Considering a cache with a high
number of accesses and a high miss ratio, the impact on the
performance tends to be high. On the other hand, if the cache
search latency is much smaller than the main memory latency
or the cache have a low number of accesses, the impact on the
performance will be low.

B. Comparing HMC and DDR3 Memories

To understand the access latency differences between
DDR3 and HMC memories, Figure 2 presents the average
number of processor cycles during main memory accesses.
The results are based on two systems formed by 8 cores and
20 MB L3 cache. The first with DDR3 memory and 4 channels,
the second with HMC and 4 links.

The results show that HMC, with its higher level paral-
lelism between the multiple vaults and banks, reduced the
average memory read latency by 60%. This means that systems
with DDR3 memories requires a low cache miss ratio due to
the high latency and small bandwidth of the main memory.
However, for the new HMC memories, the tradeoff between
the gains provided by the cache hits and the losses caused by
the extra cache latency during the misses has changed.

Considering that the cache memories can occupy up to
half of chip area on current parallel high performance proces-
sors [10], the area tradeoffs need to be analyzed in order to
understand if the area could be better used to obtain a higher
performance. Changes in the main memory architecture have
a direct impact on the cache subsystem performance, and thus,
we propose to evaluate architectural modifications, exploring
the cache memory size and the core count on the chip.

III. RELATED WORK

The gap between the processing and memory performance
is a well-known issue [2]. In order to hide the high latency
and low bandwidth of the SDR and DDR memories, different
techniques were proposed. Bigger cache memories and more
complex memory hierarchies [11], [12] are being adopted by
the industry as a way to deliver a higher bandwidth with a
reduced latency per access. However, such big cache sizes
occupy large areas of the chip, while also requiring more
complex interconnections and more attention of coherence
mechanisms as the number of levels increases.

Despite the high density and low power consumption
potentials of hybrid cache memories [13], [14], [15], which
use emerging technologies such as FeRAM, Memristors or
flash memories together with traditional memories (SRAM and
DRAM), these new techniques are still not much more than
a promise, mainly due to their lower write endurance, lower
performance and multiple technological integration challenges.

Multi-channel DDR [16] or FBDIMM memories [17] are
also used to offer higher bandwidth by increasing the bank
and module parallelism. However, multi-channel DDR requires
wider interconnections which increase their energy consump-
tion, while still not supporting multi-core memory pressure [3].
Moreover, the bandwidth can be increased further by adding
multiple memory controllers, which requires a more complex
interconnection design and also occupies large chip areas.
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In order to reduce the memory access latency, SRAM
caches can be inserted into the DRAM memories [18], [19],
storing reusable data pages in these caches. The main limi-
tation of such techniques is the reduced cache size, which is
related to the larger cell size of SRAMs compared to DRAMs.
Their data consistency and the extra cache latency are also
issues that need to be considered during the design.

Multiple studies evaluated the implementation impact and
details of off-chip DRAM cache memories [20], [21]. Such
cache memories reside outside the processor chip and can hold
large amounts of data due to the high integration capabilities
of DRAM cells. However, the latency of such systems de-
pends on the DRAM performance and also on the tag store
implementation. Although previous work has evaluated the
performance of HMC memories compared to the standard
DDR modules, no studies have explored the impact of this
new memory organization on the cache memory sub-system,
which can expose new tradeoffs present on future systems and
support radical architectural changes.

IV. SIMULATION METHODOLOGY

To understand the possible tradeoffs between the cache hit
benefits and the extra latency during cache misses, we executed
a variety of simulation experiments. This section presents the
proposed architectures to be evaluated, explaining the design
decisions, the simulation methodology, and also the parallel
benchmarks suites.

A. Proposed Architectural Designs

The baseline architecture for our experiments is inspired
by the Sandy Bridge processor with 8 cores and 20 MB L3,
as detailed in the next subsection.

Figure 3 presents the percentage of the chip area used by
each component of the baseline system. We observe that the
L3 occupies 29% of the chip area while each core with its
respective L1 and L2 caches represents less than 7%. Based on
this information, we present three possible scenarios (A, B and
C) for using the area relative to the L3 cache. The possibility
A represents the unchanged baseline. For the possibility B, we
plan to save the L3 cache area and evaluate the performance
of such system. Finally for the third possibility (C), we design
a processor with 4 extra cores with their respective L1 and L2
cache, occupying the same area of the original L3 cache.

B. Simulation Environment and Benchmark Suites

To evaluate the different architectures, we used a cycle-
accurate simulator [22]. We used the McPAT [10] modeling

(A)�L3�Cache

(B)�Saved area

(C)�4�cores�+�
L1/L2�caches

(29%�chip�area)

8x�L1�I+D
8x�L2�Caches

(22%�chip�area)
8�Cores

(33%�chip�area)

Core�0

(4.1%) NoC +�
Mem.�ctrl.�+�

Others

(17%�chip�
area)

L1�I+D
L2�Cache
(2.8%)

Fig. 3: Baseline system with L3 cache area possibilities.

TABLE I: Simulation parameters for Sandy Bridge.

Processor Cores: 8 cores @ 2.0 GHz, 32 nm; 4-wide out-of-order; 16 stages
16 B fetch size; 18-entry fetch buffer, 28-entry decode buffer; 168-entry ROB;
MOB entries: 64-read, 36-write; 3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle); 1-load and 1-store units (1-1 cycle);
Branch Predictor: 1 branch per fetch; 4 K-entry 4-way set-assoc., LRU policy BTB;
48-entry BOB; Two-Level GAs 2-bits; 16 K-entry PBHT; 256 lines, 2048 sets SPHT;

L1 Data + Inst. Cache: 32 KB, 8-way LRU, 64 B line size; 2-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch; Stride prefetch: 1-degree, 16-strides;

L2 Cache: Private 256 KB, 8-way LRU, 64 B line size; 4-cycle;
MSHR: 4-request, 6-write-back, 2-prefetch; Stream prefetch: 2-degree, 256-streams;

L3 Cache: Shared 20 MB (8-banks), 20-way LRU; 64 B line size; 6-cycle;
Bi-directional ring; MOESI coherence protocol; MSHR: 8-request, 12-write-back;

DDR3-1333 Modules: On-core ctrl.; 4 GB; DRAM@166 MHz; 8 KB row buffer
8 DRAM banks; 4-channels; 8 B burst width at 2:1 core-to-bus freq. ratio;
Open-row policy; DRAM: CAS, RP, RCD, RAS and CWD latency 9-9-9-24-7 cycles;

HMC v2.0 Module: 4 GB; 32 vaults, 8 DRAM banks/vault; 256 B row buffer;
DRAM@166 MHz; 4-links@8 GHz; 4 B burst width at 2:1 core-to-bus freq. ratio;
Closed-row policy; DRAM: CAS, RP, RCD, RAS and CWD latency 9-9-9-24-7 cycles;

tool, version 1.3, in order to calculate the energy usage and
chip area of each component of the system, enabling us to
perform comparisons regarding the chip area tradeoffs. The
parameters of the simulated system are shown in Table I.

We experimented with 14 parallel benchmarks from two
suites: 7 applications from SPEC-OMP2001 [23], and 7 appli-
cations from NAS-NPB [24]. All benchmarks were compiled
for x86-64 using GCC with the -O3 flag. The SPEC-OMP2001
benchmarks were executed using the reference input, while the
NAS-NBP suite uses input size A. Each benchmark executes
up to one time step from its parallel region.

V. EXPERIMENTAL EVALUATION

This section presents our experimental results, starting with
a comparison of the DDR3 and HMC memories. Then, we
remove the L3 cache of the system and show memory-related
statistics to understand the system performance. Finally, we
present an evaluation of the tradeoffs involved in increasing
the core count while removing the L3 cache.

A. DDR3 and HMC Results

Figure 4 presents the speedup, comparing our baseline
system using HMC with 4 links to a system using DDR3 with
4 channels. We notice that in all applications that we evaluated,
the HMC memory is able to at least match the performance
presented by DDR3, achieving average gains of 90%.

We can observe that galgel presented no performance dif-
ference (speedup of 1.00), which is explained by the very high
L3 cache hit ratio achieved (91%) and the memory footprint
(less than 5 MB) smaller than the L3 cache size. This means
that few memory accesses are handled by the main memory.
On the other hand, the swim application has a low L3 cache hit
ratio (31%) and a big memory footprint (1.4 GB), and therefore
takes more advantage of the low average read latency provided
by HMC memories, which results in a substantial speedup
compared to DDR. We can also observe that although the mg
and the mgrid applications implement the same algorithm, due
to their internal parameters, such as the grid size and the grid
sparsity applied, these applications present different behaviors
and thus different performance results.
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Fig. 4: HMC speedup over DDR3 memory.

B. Impact of the L3 Cache on Performance

Starting the analysis regarding the L3 cache influence when
HMC memory is used, Figure 5 shows the speedup results
comparing a system with only L1-L2 caches, to the baseline
with L1-L2-L3 caches. Removing the L3 cache leaded to
an average performance degradation of 4%, where speedup
values <1 indicate that the L3 cache improves the system
performance. It is possible to observe that applications with
high data reuse (and by consequence more L3 cache hits, as
shown in Figure 1), the performance is directly dependent on
the L3 cache.

Besides the cache hit ratio, another relevant metric to un-
derstand the speedup results is the Misses per Kilo Instructions
(MPKI), which represents the pressure that the L2 cache puts
on the next memory level, that can be the L3 cache or the
main memory. Figure 6 L2 cache MPKI of the evaluated
benchmarks. It shows that the average pressure that the L3
cache or the main memory needs to service is 27.8 accesses
per kilo instructions.

In our experiments we could observe that applications
with a L2 MPKI above 10 and a cache hit ratio lower
than 35% matches with the those applications (applu, fma3d,
swim, wupwise, cg and is) that improved the performance by
removing the L3 cache. For applications with L2 MPKI greater
or equal than 10 and hit ratio between 36% and 45% (mgrid
and mg), only small performance degradations occurred (less
than 5%).
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C. Chip Area Tradeoff Results

Considering that the LLC can occupy a large chip area,
this section presents a design space exploration considering
different numbers of cores while area usually occupied by the
L3 cache is freed. Figure 7 presents performance, power, area,
and EDP for different systems using HMC without the L3
cache, varying the number of cores between 8 and 16. The
results are normalized to the baseline system with 8 cores,
20 MB of L3 cache and HMC.

These results show that when more cores are implemented
in the system, more pressure is applied on the main memory,
making a better use of the HMC’s internal parallelism (vaults
and banks). The best result is achieved with 16 cores, due to
more processing elements available requiring more pressure
and the HMC memory that is able to serve this pressure. In
this case, the average speedup of 1.56 over the baseline is
achieved with an area overhead of 20% and a power overhead
of 52%. Despite the overhead, the EDP was reduced by 35%,
showing that energy efficiency can be increased. When limiting
the chip area to the baseline, we can place up to 12 cores in
the system by removing the L3 cache. Such a configuration
presents a speedup of 1.20, an area reduction of 10% and an
EDP reduction of 12%.

In Figure 8, we present an additional experiment, executing
with 12 cores in three different configurations: 12 cores
without L3 cache, 12 cores with 10 MB L3 cache and
12 cores with the full 20 MB L3 cache. The results show
that for most benchmarks, increasing the L3 only improves
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performance slightly. Only three applications, galgel, ft, and
sp, profit significantly from the larger cache. As before, several
benchmarks reduce performance with larger caches due to the
extra memory access latency.

VI. CONCLUSIONS AND FUTURE WORK

During the last years, high performance processors started
to provide an increasing number of cores per chip. Simi-
larly, their cache memories kept on increasing and started
to consume vast areas of the chip. Such cache memories
exploit the spatial and temporal locality of memory accesses
in order to hide the high latency and small bandwidth of
the traditional DDR memories from the processor. With the
new HMC memories sustaining the performance even under
high memory pressure, while fewer memory accesses can
benefit from large caches due to their low temporal locality,
the tradeoff between cache size and number of cores can be
explored. Our research evaluates this tradeoff by comparing
different hardware systems, exploring the implementation of
different cache levels and numbers of cores.

In our experiments, we found that applications with a low
temporal or spatial locality, with L3 cache hit ratio lower
than 45%, benefits or have a low impact on the performance
when removing the L3 cache (maximum 3% of performance
reduction). By removing the L3 cache from our baseline sys-
tem we observed on average an 4% performance degradation.
However, the area of this big cache could be better utilized by
adding more processing capabilities. Our proposed architecture
with 12 cores provided performance improvements of 16%
with EDP reduction of 12%, using the same baseline chip area
and increasing the overall efficiency.
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