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Abstract

The performance and energy efficiency of current systems is influenced by accesses
to the memory hierarchy. One important aspect of memory hierarchies is the intro-
duction of different memory access times, depending on the core that requested the
transaction, and which cache or main memory bank responded to it. In this context,
the locality of the memory accesses plays a key role for the performance and energy
efficiency of parallel applications. Accesses to remote caches and NUMA nodes are
more expensive than accesses to local ones. With information about the memory access
pattern, pages can be migrated to the NUMA nodes that access them (data mapping),
and threads that communicate can be migrated to the same node (thread mapping).

In this paper, we present LAPT, a hardware-based mechanism to store the memory
access pattern of parallel applications in the page table. The operating system uses
the detected memory access pattern to perform an optimized thread and data mapping
during the execution of the parallel application. Experiments with a wide range of
parallel applications (from the NAS and PARSEC Benchmark Suites) on a NUMA
machine showed significant performance and energy efficiency improvements of up to
19.2% and 15.7%, respectively, (6.7% and 5.3% on average).
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1. Introduction

Advances in shared-memory architectures have led to a large increase in thread-
level parallelism (TLP) in computer systems, caused by the increase in number of
processors per system, and cores per chip. As parallel applications need to access
shared data, the placement of threads and data can have a great impact on performance
and energy consumption. This impact varies among different architectures, since each
processor family uses a different organization for the cache hierarchy and the main
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memory system. The memory hierarchy is formed by several cache levels, where the
levels closer to the processor cores tend to be private, followed by caches shared by
multiple cores. In systems with Non-Uniform Memory Access (NUMA), the main
memory is also clustered between cores or processors.

A locality-aware thread mapping can reduce the number of cache invalidations and
line replications, as threads that share data will be kept close and will share the same
memory resources [1]. The accesses to shared data represent communication between
the threads. A locality-aware data mapping in NUMA systems can reduce the number
of accesses to remote nodes, as most of the data accessed by each threads will be kept
close to them [2]. Both mappings can impact different resources, such as interconnec-
tion systems and cache coherence protocols.

Mechanisms to map threads and data have been proposed. Most of the proposals
perform thread or data mapping separately [1, 3, 4]. Several approaches focus on static
mapping using memory traces from previous executions in controlled environments
such as simulators [5], which has a high overhead and is not able to handle dynamic
behavior. Some mechanisms depend on particular APIs [6], or rely on indirect or
incomplete information about the locality of memory accesses [1, 7].

In this paper, we present a Locality-Aware Page Table (LAPT) to enable thread and
data mapping by operating systems. Our mechanism detects the locality of memory
accesses in hardware, and performs the mappings in software. LAPT operates during
run time, allowing mappings to be performed dynamically. It does not require previous
knowledge of the application’s behavior, or modifications to its source code or par-
allelization libraries. By detecting locality in hardware, LAPT detects more memory
access samples than previous mechanisms, generating more accurate information.

This paper represents an extension of our previous work [8]. We extend the paper
by changing LAPT to store all the data used to calculate the data mapping in the page
table, improving the efficiency of the mechanism by avoiding the access to different
data structures. Furthermore, we perform an extensive analysis of how LAPT behaves
under different scenarios, varying cache memory and memory page sizes, as well as
interconnection latencies. We also include an evaluation of cache misses and intercon-
nection usage inside a full system simulator, which help us understand the performance
improvements.

2. Related Work

In static mapping mechanisms, the application execution is usually monitored to
generate memory access traces, which are then analyzed to compute a mapping. In or-
der to monitor memory accesses, simulators [5] or hardware performance monitoring
units (PMU) can be used [2]. The main drawback of these methods is the requirement
of memory traces, which are expensive to generate and analyze, and are not able to han-
dle changes in application behavior. LAPT does not suffer these disadvantages, as it
performs the mapping dynamically. PMUs can also be used to perform dynamic map-
ping [3], but with a high overhead. Other mechanisms that perform dynamic mapping
depend on indirect performance statistics from hardware counters [9, 10], generating
less accurate mappings, while LAPT knows the memory addresses accessed by each
thread.
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In [1], the authors use hardware counters that provide the memory addresses of
requests solved by remote cache memories. This detects incomplete communication
patterns because memory requests resolved by local caches are not considered. Also,
data mapping was not performed, and therefore their proposal is not able to reduce re-
mote memory accesses in NUMA architectures. kMAF [7] uses page faults of parallel
applications to detect memory accesses. Carrefour [11] is a similar mechanism that
uses sampling to detect page usage. Due to its overhead, the authors restrict the mech-
anism to 30,000 pages, which limits its use to applications with a low memory usage.
Although these proposals have access to memory addresses, only a small sample of all
accesses is taken into account. LAPT guarantees that all memory pages are considered
when detecting locality by tracking the TLB misses.

3. LAPT – A Locality-Aware Page Table

In order to enable operating systems to perform thread and data mapping, our mech-
anism uses the virtual memory implementation of current architectures. Virtual mem-
ory requires the translation of virtual addresses to physical addresses for every memory
access. To do so, the operating system keeps page tables in the main memory that con-
tain the physical address and protection related information for every page. To reduce
the amount of accesses to the main memory for address translation, a special cache
memory called Translation Lookaside Buffer (TLB) is responsible for caching the page
table translation entries for the most recently accessed pages. On every memory access,
the processor checks if the corresponding page has a valid entry in the TLB. If a valid
entry already exists (TLB hit), the virtual address is translated and the processor per-
forms the memory access. In case of a TLB miss, the processor performs a page table
walk and caches the entry in the TLB before proceeding with the address translation.

Our Locality-Aware Page Table (LAPT) implements changes to the virtual memory
subsystem on both the hardware and software levels, as illustrated in Figure 1. On the
hardware level, LAPT keeps track of all TLB misses, detecting the communication
between threads and registering a list of the latest threads that accessed each page in
fields introduced in the corresponding page table entry. On the software level, the
operating system maps threads to cores based on the detected communication pattern,
and maps pages to NUMA nodes by checking which threads accessed each page.

We detail LAPT in this section. We first explain how communication is detected
in hardware. Afterwards, we describe how communication information is employed to
map threads and data. Lastly, we discuss the overhead of LAPT.

3.1. Communication Detection

LAPT requires the addition of an entry in the page table called communication vec-
tor (CV ) to identify the threads that access a page. Each CV stores the IDs of the last
threads that accessed the corresponding page. Whenever CV gets full, an old thread ID
needs to be removed to make room for the new one, keeping temporal locality. LAPT
also introduces a communication matrix (CM ) in main memory for each parallel ap-
plication. It stores an estimation of the amount of communication between each pair
of threads. Special registers containing the memory address and dimensions of CM ,
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as well as the ID of the thread being executed, must be added to the architecture and
updated by the operating system.

The behavior of LAPT is as follows. When thread T tries to access a page P but
its entry is not present in the TLB, the processor performs a page table walk. Besides
fetching the page table entry of P , the processor also fetches the corresponding com-
munication vector CVP . LAPT then increments the communication matrix CM in
row T , for all the columns that correspond to a thread in CVP :

CM [T ][ CVP [i] ]← CM [T ][ CVP [i] ] + 1,where 0 ≤ i < |CVP | (1)

After updating CM , LAPT inserts thread T into CVP :

CVP [i]← CVP [i− 1],where 0 < i < |CVP | (2)

CVP [0]← T (3)

3.2. Thread Mapping Computation
The information provided by the communication detection is used to calculate an

optimized mapping of threads to processing units (PUs) during the execution of the par-
allel application. As the mapping problem is NP-hard [12], the use of efficient heuris-
tics are required to calculate the mapping. Dynamic mapping requires algorithms with
a short execution time, since its overhead directly affects the executing application.

We model thread mapping as a graph problem with an application graph and a ma-
chine hierarchy graph. The application graph can be obtained directly from the com-
munication matrix (CM ) kept by LAPT. Vertices represent threads and edges represent
the amount of communication between them. In the machine hierarchy graph, vertices
represent the components of the memory hierarchy, such as the cores and caches, and
edges represent their links.
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Figure 1: Overview of the LAPT mechanism.
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To compute the mapping, we use the dual recursive bipartitioning algorithm of the
Scotch graph library [13] version 6.0. It receives as input the application and machine
hierarchy graphs, and outputs the thread mapping. Scotch calculates the minimum edge
cut in the graph, such that threads that have intensive communication are kept in the
same subset. It repeats this procedure recursively in each graph subset. We used Scotch
because it has a short execution time (less than 1 ms to map 32 threads) while providing
good results [14], therefore, being suitable for online mapping. It has a complexity of
O(N3), where N is the number of processes to be mapped [15]. Other libraries and
algorithms, such as METIS [16], Zoltan [17], EagerMap [18] and TreeMatch [19],
could be used. The algorithm receives the communication and hierarchy graphs as
input and outputs the PU for each thread such that the total cost of communication is
minimized. This information is then used to migrate threads to their assigned PUs.

The operating system chooses the frequency in which the thread mapping routine
is called. To prevent unnecessary migrations and to reduce the overhead, we adjust this
frequency dynamically. If the computed mapping does not differ from the previous
mapping, we increase the mapping interval by 50 ms because the mapping is stable. If
mappings differ, we halve the interval. The interval is kept between 50 ms and 500 ms
to limit the overhead while still being able to react quickly to changes of communica-
tion behavior. The initial time interval was set to 300 ms in the experiments.

3.3. Data Mapping Computation
To calculate the data mapping, the operating system verifies the contents of the

communication vector CV of each page in the page table. We also introduce a field
in the page table to store an estimation of the amount of memory accesses from each
NUMA node, which we call NUMA vector (NV ). This field is updated by the operating
system and it has one counter per NUMA node.

When the data mapping routine is called, for every page P of the application, the
counters of the NUMA nodes of each thread in CVP are incremented in the NUMA
vector of this page (NVP ). This is illustrated in Equation 4, where node(x) is a func-
tion that returns the NUMA node in which thread x is running.

NVP [ node(CVP [i]) ]← NVP [ node(CVP [i]) ] + 1,where 0 ≤ i < |CVP | (4)

After the contents of NVP are updated, we use Equations 5 and 6 to determine if
P , which currently resides in node M , should be migrated to the NUMA node N .

DataMap(P ) = {N | NVP [N ] = max(NVP )} (5)

Migrate =

{
true if max(NVP ) ≥ 2 · avg(NVP ) and N 6= M

false otherwise
(6)

A page migration will happen only if the value of the counter of the node returned
by DataMap is greater or equal to twice its average value. In this way, we reduce
the possibility of having a ping-pong effect of page migrations between NUMA nodes.
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Naturally, a migration happens only if the node returned by the DataMap function is
different from the NUMA node in which page P currently resides. Also, every time a
page is migrated and the average value of NVP is at least 1, we use an aging technique
in which all elements of NV are halved, making it possible to adapt to changes in
access behavior.

The operating system calls the data mapping routine in two situations: (I) whenever
the thread mapping routine is called and causes a change in the mapping, in order to
move the pages used by the threads when they migrate; (II) and whenever there has
been a long time since the last call, since the data mapping may change even if the
thread mapping remains the same. In our experiments, the maximum interval to call
the data mapping routine was set to 500 ms.

3.4. Example of the Operation of LAPT

To illustrate how LAPT works, consider the example shown in Figure 1, where
an application with 6 threads is executing on a NUMA machine with 4 nodes, and
communication vectors support up to 4 thread IDs. Thread 3 tries to access page P but
it does not have an entry in the TLB. The processor then performs a page table walk
to read the corresponding page table entry. Besides reading the physical address and
page protection information, it reads the communication vector, which contains thread
IDs 0, 2, 1, and 4, in the order from MRU to LRU position. The core running thread 3
continues its execution. In parallel to that, LAPT increments the communication matrix
in cells (3, 0), (3, 2), (3, 1) and (3, 4). After that, LAPT updates the communication
vector, moving thread 3 to the MRU position and shifting all the other threads in CV
towards the LRU position, removing thread 4.

During run time, the operating system evaluates the communication matrix to up-
date the thread mapping. It changes the mapping of the threads to execute thread 0
on NUMA node 0, and migrates the other threads to node 1. Then, it evaluates the
NUMA Vector of P for data mapping. The initial value of all the elements in NVP

is 0. Since only thread 0 is executing on node 0, the corresponding entry in NVP will
be incremented by 1. Likewise, the other three threads that are in CVP are running
on node 1, whose value will be incremented by 3. The node with the highest value in
NVP is node 1 (value 3) and the average of the values of NVP is 1. Therefore, page P
is migrated to node 1 following Equation 6.

3.5. Overhead

LAPT’s overhead consists of storage space in main memory, circuit area to imple-
ment LAPT in the processor, and a run time overhead.

3.5.1. Memory Storage Overhead
The communication matrix (CM) requires 4 ·N2 bytes, where N is the number

of threads, considering an element size of 4 Bytes. For 256 threads, the communica-
tion matrix requires 256 KByte. If the parallel application creates more threads than
the maximum supported by the communication matrix during run time, the operating
system can allocate a larger matrix and copy the values from the old matrix.
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In the last level page table entries, we store the communication vector (CV) and
NUMA Vector (NV). A common size for each page table entry in current architectures
is 8 Bytes, as in x86-64 [20]. We extend the size of each entry to 16 Bytes. We
reserve 8 bits to store each thread ID of CV, supporting up to 256 threads per parallel
application, and track 4 threads per page. We also reserve 8 bits to store each count
of NV, and support 4 NUMA nodes. The space used in the page table represent 0.2%
of memory space overhead compared to the original system when using a standard
4 KByte page size. To support large systems, we would just need to use more memory.

3.5.2. Circuit Area Overhead
LAPT requires the addition of some registers, adders, and multiplexers to each

core. More specifically, 64-bit registers are used to store the position in memory of
CM , intermediary values to compute the memory position of an entry on CM , and
the displacement to read CV for a page. 16-bit registers store the ID of the current
running thread, the IDs stored on CV and one of these IDs to compute the address of
an entry on CM. One 32-bit register is required to store the value of CM [T ][ CVP [i] ].
Two 64-bit carry look-ahead adders are employed to compute the addresses of CVP

and CM [T ][ CVP [i] ], while a 32-bit carry look-ahead adder is used to increase the
value of CM [T ][ CVP [i] ]. Finally, multiplexers define which values are summed. In
total, LAPT requires less than 25, 000 additional transistors per core, which represents
an increase in transistors of less than 0.009% in a current processor.

3.5.3. Runtime Overhead
The additional hardware introduced by LAPT is not in the critical path, since it

operates in parallel to the normal operation of the processor. On the hardware level,
the time overhead introduced by LAPT consists of the additional memory accesses to
update the page table entries and communication matrix. The amount of additional
memory accesses depends on the TLB miss rate, which differs for each application.
The accesses to the communication matrix do not need to be locked since each row is
updated only by one thread. To update the statistics in the page table, a race condition
can happen in case threads generate a TLB miss for the same page at the same time.
Since the time LAPT takes to update the page table is small, this race condition is a
rare event. Also, this race condition would not cause the application to fail, just a slight
reduction in accuracy. On the software level, the time overhead includes the calculation
of the thread and data mappings, and the respective migrations. In general, computing
the mapping more frequently increases the overhead, but also increases the accuracy.
The scalability of LAPT is affected very little by the number of NUMA nodes or cores.
If for any reason the number of nodes or cores increases to a point that affects LAPT’s
overhead, the operating system could compute the mapping less frequently.

4. Experimental Evaluation

We perform experiments on a real machine and in a full system simulator. The
real machine has two NUMA nodes and one Intel Xeon E5-2650 processor per node,
with a total of 32 virtual cores, running version 3.8 of the Linux kernel. In this ma-
chine, the latency of remote memory accesses are 40% higher than the latency of local
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memory accesses. Since LAPT is an extension to current hardware, we use Pin [21],
a binary instrumentation tool, to generate information regarding the thread and data
mappings. We developed a kernel module that receives this mapping information and,
during the execution of the application, maps the threads and data accordingly. The
full system simulator used was Simics [22] extended with the GEMS-Ruby memory
model [23] and the Garnet interconnection model [24], and simulated 8 cores orga-
nized in 4 NUMA nodes. As workloads, we used the OpenMP implementation of the
NAS Parallel Benchmarks [25] v3.3.1 and the PARSEC benchmark suite [26] v3.0.

Detailed information about the methodology can be found in [8]. The following
sections present an evaluation of the performance and energy consumption improve-
ments of our proposal, as well as its overhead. We also explore the design space,
analyzing how LAPT behaves on different environments.

4.1. Performance Results

The communication patterns of a subset of our workloads are depicted in Figure 2.
Since the absolute values of the contents of the communication matrices vary signif-
icantly between benchmarks, we normalized each communication matrix to its own
maximum value and color the cells according to the amount of communication. Darker
cells indicate more communication.

The results obtained in Simics can be found in Figure 3. We evaluate execution
time, L2 cache misses per thousand instructions (MPKI) and interchip interconnection
traffic. The results obtained in Simics are from a single execution due to simulation
time constraints. We compare the results on the simulator to its default mapping and to
an oracle mapping. The default mapping is the original scheduler of the Linux kernel,
combined with an interleaved data mapping policy of GEMS. The oracle mapping gen-
erates mappings considering all memory accesses and the memory hierarchy. We also
used the Scotch library [13] in the oracle mapping, otherwise it would be unfeasible to
calculate the thread mappings. Results are normalized to the default mapping.

The results obtained in the real machine are shown in Figure 4. In the real ma-
chine, we evaluate execution time, L2 and L3 cache misses per thousand instructions
(MPKI) and interchip interconnection traffic. Cache misses and interchip traffic were
measured using Intel PCM. All experiments in the real machine are the averages ob-
tained from 30 executions, and we show a 95% confidence interval calculated with
Student’s t-distribution. In the real machine, we compare the results of our proposal
to the default mapping performed by the operating system, to random static mappings
and to an oracle mapping. For the random mapping, we randomly generated a thread
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Figure 2: Communication pattern of applications with different characteristics. Axes represent thread IDs.
Cells show the amount of accesses to shared pages between threads. Darker cells indicate more accesses.
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and data mapping for each execution, and no migrations are performed. For the oracle
mapping, we generated traces of all memory accesses for each application and perform
an analysis of the communication and page usage patterns, similar to [5], and use the
Scotch library [13] to calculate the thread mappings considering the memory hierarchy.
The oracle mapping information is then fed to the kernel module, as explained at the
beginning of Section 4. Results are normalized to the default mapping of the operating
system.

Some applications are influenced by both thread and data mapping. One example
is SP. The communication pattern of SP, shown in Figure 2c, highlights that there are
threads that communicate more with a small subgroup. When an application presents
this characteristic, mapping threads that communicate to nearby cores in the memory
hierarchy improves performance. In the case of SP, most communication happens be-
tween neighboring threads, which is very common on domain decomposition parallel
applications. BT and LU have similar patterns. In applications influenced by both
thread and data mapping, a locality-aware mapping usually reduces cache misses and
interchip interconnection traffic.
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Figure 3: Performance results in Simics, normalized to the default mapping.
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Figure 4: Performance results on the real machine, normalized to the OS.

Other communication patterns are suitable for mapping too. For instance, the com-
munication between more distant threads in MG is more evident than in the other ap-
plications. However, in MG, only interconnection traffic was reduced in the real ma-
chine, and in Simics the reduction of interchip traffic was higher than cache misses.
The cause of this is that the amount of memory used in MG is much higher than the
available cache memory space, such that only a small fraction of shared data can be
stored in cache. However, we can observe the importance of thread mapping in MG
by the reduction of interchip traffic, since threads that communicate are mapped to
cores in the same NUMA node. In Fluidanimate, the communication between more
distant threads is also more evident, but the improvements obtained by LAPT over the
operating system was lower.

Ferret and Dedup follow a pipeline communication model, where threads that com-
municate through the pipeline form communication clusters (Figures 2d and 2f). An-
other interesting aspect of these two applications is that they create more threads than
the number of cores. Ferret created 35 threads and Dedup 27 threads, while the sim-
ulated machine has 8 cores. This proves that LAPT is able to handle applications that
have more than one thread per core by adding a register in the architecture containing
the identifier of the thread running in the core. In both Ferret and Dedup, cache misses
and interchip interconnection were reduced significantly because LAPT was able to
detect which threads communicate in the pipeline parallelization model of these appli-
cations, mapping them and their data nearby in the memory hierarchy.
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For applications whose communication pattern is such that threads present similar
amounts of communication, thread mapping is not able to improve performance. CG
and Vips are examples of this kind of application. This happens because the commu-
nication can not be optimized, regardless of the thread mapping. We can observe this
in the pattern of CG, shown in Figure 2a, where each pair of threads has a similar
amount of communication. On the other hand, the performance of these applications
may still be improved by data mapping. Even if an application does not communi-
cate much among its threads, each thread will still need to access its own private data,
which can only be improved by data mapping. CG presented the highest improvement
in the real machine, reducing execution time by 19.2%. It is important to note that this
does not mean that data mapping is more important than thread mapping, because the
effectiveness of data mapping depends on thread mapping for shared pages.

We can observe in CG that the amount of cache misses was not reduced in the real
machine. In the simulator, the amount of cache misses in CG was reduced due to the
lower amount of unnecessary thread migrations introduced by the operating system.
As previously said, the influence of thread mapping in CG is very low, such that it
is difficult to improve the shared data usage in the caches. However, the interchip
interconnection traffic was reduced to almost zero in the real machine and 89.5% in
Simics. This happened because data mapping migrated the private data of each thread
to its NUMA node, reducing interchip traffic. Vips results behave similarly.

The communication pattern of Swaptions is similar to the one of Vips, not being
influenced by thread mapping. Also, the memory usage of Swaptions is low, such that
almost all its data fits into the caches and are thereby not affected by data mapping.
EP is a CPU-bound application [25] with almost no communication between threads.
Similarly to Swaptions, EP’s data fits into the caches of the real machine, which makes
data mapping irrelevant. However, this is not the case of EP in Simics due to the lower
cache memory size, such that data mapping improved performance.

LAPT reduced the L2 and L3 MPKI in the real machine by 7.0% and 18.2% on
average. The interconnection traffic was reduced by an average of 41.5% and 47.1%
in the real machine and Simics, respectively. L3 MPKI had a higher reduction than
L2 MPKI due to the higher cache size, which allows more caching of shared data.
Execution time was reduced by 6.7% and 10.1% on average in the real machine and
Simics, which is a lower reduction than the observed in cache misses and interchip
interconnection traffic. The reduction of execution time tends to be a fraction of the
reduction of cache misses and the interchip traffic. An improved mapping directly
impacts in cache misses and interconnection traffic, which then impact execution time.

The results obtained with LAPT are similar to the oracle mapping, demonstrating
its effectiveness. Occasionally, LAPT performed better than the oracle mapping. This
may happen because we only consider the memory accesses to generate the oracle map-
ping, while there are several other factors that influence performance, such as influence
from the operating system and other processes, contention in the interconnections or
functional units, among others. For instance, if during the execution using the oracle
mapping a thread from another process is scheduled, it will interfere with its perfor-
mance. In most cases, it performed significantly better than the random mapping. This
shows that the gains compared to the operating system are not due to the unnecessary
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Figure 5: Energy consumption results in the real machine, normalized to the OS.

migrations introduced by the operating system, but due to a more efficient usage of the
machine resources.

As explained in Section 3.5.3, LAPT introduces a performance overhead at hard-
ware and software levels. The average performance overhead was only 0.36%
and 0.4%, respectively. The time required to update the statistics during each TLB
miss was on average 162 cycles (measured inside Simics/GEMS). However, applica-
tion execution is not stalled by LAPT. Regarding related work, we compared LAPT
to three previous techniques: Autopin [9], the Azimi thread mapping [1], and to the
Marathe [3] data mapping mechanism. The results show that indirect or incomplete
sources of communication information are not accurate to optimize memory access
locality. Also, mechanisms that perform both thread and data mappings are able to
achieve better improvements than mechanisms that perform these mappings separately.
More details about the overhead and the comparison to related work are given in [8].

4.2. Energy Consumption Results

The energy consumption was measured in the real machine using the Running Av-
erage Power Limit (RAPL) hardware counters [20] with Intel PCM. Results of the total
amount of processor and DRAM energy consumption are shown in Figures 5a and 5b.
We can observe that the behavior is similar to the execution time results, with the
biggest reductions for BT, CG, LU, SP and UA. Additionally, we can observe that the
DRAM energy was reduced more than the processor energy (11.3% and 5.3% on aver-
age, respectively) because a locality-aware mapping has more influence in the memory
than in the processor. We also measured the energy per instruction, which was reduced
by 4.4% on average, and up to 12.5% in SP. The results of energy per instruction show
that our mechanism not only saves energy by reducing the execution time, but also by
providing a more efficient execution, which is an important goal for future Exascale
architectures [27].

4.3. Design Space Exploration

In this section, we analyze how LAPT behaves on environments with configuration
different from the previous experiments using Simics/GEMS. We vary four important
parameters: cache memory size, memory page size, interchip interconnection latency
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and the multiplication threshold. We show only the results regarding the applications
whose communication patterns are illustrated in Figure 2 due to space limitations.

4.3.1. Varying Cache Sizes
We first analyze how LAPT behaves under different cache sizes. The cache mem-

ory size influences the performance improvements obtained with locality-aware map-
ping because it affects the amount of cached shared data and amount of accesses to
the main memory. The previous experiments were performed with L2 cache memories
with a capacity of 1 MByte and a latency of 5 cycles. We now show results of caches
with 512 KBytes, 2 MBytes, and 4 MBytes, and latencies of 4, 6, and 6 cycles, re-
spectively, calculated using CACTI [28]. We analyze execution time, cache misses and
interchip interconnection. Figure 6 contains the improvements of LAPT over the base-
line. In the absolute values, we chose to show cycles per instruction (CPI) instead of
execution time due to the high difference of execution time between the applications,
which could make the graphics illegible.

LAPT was able to improve performance for all applications and all cache sizes. The
results follow the same pattern of the previous experiments: the amount of reduction
of execution time depends on the reduction of cache misses and interchip interconnec-
tion traffic. In Dedup, LAPT presented the highest reduction of execution time with
cache memories of 4 MBytes, in which LAPT also reduced cache misses and inter-
chip traffic the most. The same happens in Ferret, but with a 2 MBytes cache. In SP,
the configuration where LAPT presented the best improvements was with a 512 KBytes
cache, where only the interchip traffic presented the highest reductions. In CG and MG,
the configuration where LAPT presented the best improvements was with a 2 MBytes
cache, but only cache misses presented the highest reductions.

We can make a similar analysis to verify the configurations in which LAPT per-
formed worse. LAPT performed worse in CG and Fluidanimate when using 1 MByte
caches, where the reduction of cache misses and interchip traffic was also the worst.
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Figure 6: Varying L2 cache memory sizes. Results are normalized to the default mapping with the corre-
sponding cache size.
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Dedup performs similarly, but with 512 KBytes. MG and SP performed worse with
4 MBytes and 2 MBytes caches, respectively, where only cache misses had the lowest
reductions. LAPT was able to reduce only interchip traffic in SP with 512 KBytes,
1 MByte and 2 MBytes caches.

LAPT, in some situations, increases cache misses and thereby interchip traffic when
increasing cache size. This happened mostly in CG and MG with 1 MByte caches, and
in Ferret with a 4 MByte cache. In these applications, more thread migrations are in-
troduced due to their communication patterns, in which a slight change may result in
a different thread mapping. Depending on the migrations, more cache misses or inter-
chip traffic can be introduced, decreasing performance. These thread migrations could
be avoided if the thread mapping algorithm performed an analysis on the communica-
tion pattern to check if a migration is really necessary. Also, the memory addresses of
pages change when they migrate to another node, which introduces cache misses.

It is important to note and reiterate that, despite the lower reduction in some con-
figurations, LAPT was able to reduce execution time in all cases.

4.3.2. Varying Page Sizes
Another important parameter for LAPT is the page size. In this section, we evaluate

how LAPT behaves under different page sizes. The normalized execution time and
interchip interconnection traffic are shown in Figure 7a and 7b. We also show the TLB
miss rate, in Figure 7c, and a metric called exclusivity level, in Figure 7d, introduced
in [7]. The exclusivity level of a page corresponds to the highest number of accesses
to the page from a single NUMA node in relation to the number of accesses from all
nodes. The exclusivity level of an application is a weighted average of the exclusivity
of all pages considering the amount of memory accesses. The higher the exclusivity
level of an application, the higher its potential for locality-aware data mapping. The
previous experiments were performed with a 4 KBytes page size. In this section we
evaluate how LAPT performs with page sizes ranging from 1 KByte to 4 MBytes.

We can observe that, as expected, the TLB miss rate drops considerably when page
size increases. This influences LAPT because there are less updates to the commu-
nication matrix, since the updates happen on TLB misses, influencing the detected
communication pattern. Since LAPT detects communication in the page level granu-
larity, increasing page size can also lead to the detection of different communication
patterns. This happens when two threads access the same page, but in different offsets.
The analysis of the exclusivity level shows that, for all applications except Ferret, this
interference of accesses in different offsets is low when the page size is 1 KByte or
4 KBytes, but increases noticeably in larger page sizes.

In relation to data mapping, the lower exclusivity level with larger page sizes tends
to decrease the performance improvement. The reason for this is that there would
be more threads executing in cores from different NUMA nodes when the page size
is larger. LAPT was able to decrease interchip traffic more with 1 KByte than with
4 MByte for all applications, showing the tendency of lower improvements with larger
page sizes. In Ferret, this decrease is lower because the exclusivity level is less influ-
enced by the page size than in the other applications. In CG, MG, SP and Fluidanimate,
the exclusivity level is very similar between 1 MByte and 4 MByte pages, because the
exclusivity is already very high with 1 MByte, such that there is no increase in the
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number of threads accessing each page with 4 MByte pages. In SP, the exclusivity is a
little higher with 4 MByte pages due to noise from different simulation instances.

In most cases, the best performance improvements happened with an intermediate
page size, such as in MG with 64 KBytes page size. This happened because the pages
were migrated earlier during the execution, such that the benefits of the improved data
mapping took effect also earlier. Still in MG, the exclusivity level decreases signifi-
cantly when the page size is 256 KByte, which is reflected in the lower reduction of
interchip traffic and thereby in performance.

The reason for this behavior is that there is a trade-off between the efficiency of the
behavior detection and the performance benefits of an improved data mapping. Smaller
pages require more time to detect the pattern for the migration, but allow higher per-
formance improvements since the lower granularity reduces the number of cross-node
memory accesses (higher exclusivity). On the other hand, detecting the access pattern
of larger pages can be more efficient, since a larger memory area can be characterized

Memory page size:
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Figure 7: Varying memory page sizes. Results of Figures 7a and 7b are normalized to the default mapping
with the corresponding page size.
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Figure 8: Varying interchip interconnection latency.

with less TLB misses. Larger pages also cause more memory accesses across nodes,
which limits the benefits of mapping.

It is important to note that the memory footprint of the applications used in the
simulations is very small due to the small input size used required by simulation time
constraints. Applications with higher memory footprints keep similar exclusivity levels
with larger page sizes [7]. Therefore, LAPT would keep similar performance improve-
ments with larger page sizes.

4.3.3. Varying Interchip Interconnection Latencies
We also analyzed the interchip interconnection latency. It influences the time it

takes to send cache coherence messages, such as cache line invalidations, as well as
cache line transfers between caches, affecting thread mapping. Regarding data map-
ping, the interchip interconnection latency influences the time it takes to perform re-
mote memory accesses. Local memory accesses do not suffer any impact. The previous
experiments were performed with an interchip interconnection latency of 40 cycles. In
this section we evaluate how LAPT behaves with latencies from 10 to 70 cycles.

The results obtained from varying the interchip interconnection latencies are shown
in Figure 8. We can observe that the CPI of the execution of the operating system
increases significantly with the increase of the interchip latency for most applications.
On the other hand, for all applications except CG, the CPI obtained by LAPT suffers a
much lower impact from latency increase. LAPT is less influenced by latency because
it is able to reduce the amount of coherence messages, cache-to-cache transfers and
remote memory accesses.

In CG, the decrease of CPI when increasing the latency happened due to the reduc-
tion of cache misses. This reduction of cache misses in CG occurred due to the fact that
there were less thread migrations in the execution with a higher latency. As explained
before, small differences in the communication pattern of CG from different executions
can lead to different thread mappings, and thereby to different results. What is most
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Figure 9: Varying the multiplication threshold. Figure 9a is normalized to the default mapping.

important is, despite these differences introduced by noise during execution, LAPT, as
previously explained, suffers a lower impact from higher interconnection latencies.

4.3.4. Varying the Multiplication Threshold
In the previous experiments, we used Equation 6 to determine if a page should

migrate to another node. The equation determines that a page migration will happen
only if the value of the counter of the node with highest NVP is greater or equal to
twice the average value. In this section, we analyze the sensitivity of the mechanism to
multiplication thresholds other than 2. We vary the threshold from 1 to 6 and evaluate
the impact on execution time and number of page migrations. The execution time is
shown in Figure 9a, and the number of migrations per page is shown in Figure 9b.

We can observe the tendency that, when increasing the multiplication factor, the
number of page migrations decreases. This is the expected behavior, since the higher
the multiplication factor in Equation 6, more accesses from a node are required to trig-
ger a page migration. The applications most affected by the number of page migrations
are CG and Ferret, where LAPT performs better with less page migrations. This hap-
pened not only due to a lower overhead of copying the pages across nodes, but also due
to lowering its side effects, such as the cache misses and pollution (the address of the
page changes when moving to another node) and interconnection traffic of transferring
the page. In CG, the best improvements happen when the threshold is set to 5. When
the threshold is set to 6, the performance decreases because of two reasons: (i) some
important page migrations did not happen; (ii) pages take more time to migrate. In the
other applications, the influence of the multiplication factor is very low.

5. Conclusions and Future Work

In this paper, we presented LAPT, a mechanism that adds a support in hardware to
detect accurate memory access patterns between threads and information about which
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threads access each page. In the operating system, LAPT analyses the detected infor-
mation and performs locality-aware thread and data mapping. In contrast to previous
work, LAPT has access to many more memory access samples and does not require
any previous information about the behavior of the applications, nor changes to the
application or runtime libraries.

We evaluated LAPT in Simics/GEMS and on a real machine, achieving perfor-
mance improvements of up to 35.9% and 19.2% (10.1% and 6.7% on average). Per-
formance improvements were possible due to a reduction of cache misses and traffic
on the interconnections. L3 cache MPKI and interconnection traffic were reduced by
up to 59.8% and 97.9% in the real machine (18.2% and 41.5% on average). Energy
consumption was reduced by up to 15.7% (5.3% on average).

In the experiments with Simics/GEMS, we varied several architectural parameters,
evolving cache memory and memory page sizes, as well as different interchip intercon-
nection latencies. Experiments with different cache sizes indicated that the importance
of thread mapping increases when the cache memory size also increases, as there will
be more shared data in the caches. The importance of data mapping is higher when the
memory footprint of the application overwhelms the available cache memory space.
Experiments with different page sizes showed that LAPT is able to handle page sizes
higher than the default of x86 architectures. When varying interchip interconnection
latencies, the impact of higher latencies is lower in LAPT due to the high reduction
of accesses through interchip interconnections. Also, these experiments demonstrated
that LAPT is able to improve performance in a wide range of architectures.

As future work, we intend to evaluate other thread mapping algorithms. We also
plan to extend LAPT to support parallel applications with several processes that do not
necessarily share a common page table.
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