Opportunities and Challenges of Performing
Vector Operations inside the DRAM

Marco A. Z. Alves, Paulo C. Santos, Matthias Diener, Luigi Carro
Informatics Institute
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

{mazalves, pcssjunior, mdiener, carro}@inf.ufrgs.br

ABSTRACT

In order to overcome the low memory bandwidth and the
high energy costs associated with the data transfer between
the processor and the main memory, proposals on near-data
computing started to gain acceptance in systems ranging
from embedded architectures to high performance comput-
ing. The main previous approaches propose application spe-
cific hardware or require a large amount of logic. More-
over, most proposals require algorithm changes and do not
make use of the full parallelism available on the DRAM de-
vices. These issues limits the adoption and the performance
of near-data computing. In this paper, we propose to im-
plement vector instructions directly inside the DRAM de-
vices, which we call the Memory Vector Extensions (MVX).
This balanced approach reduces data movement between the
DRAM to the processor while requiring a low amount of
hardware to achieve good performance. Comparing to cur-
rent vector operations present on processors, our proposal
enable performance gains of up to 97x and reduces the en-
ergy consumption by up to 70x of the full system.

CCS Concepts

eComputer systems organization — Heterogeneous (hy-
brid) systems;

Keywords

Near-data computing; Reducing data movement; Vector in-
structions;

1. INTRODUCTION

The main memory bandwidth of current systems is a known
performance bottleneck. Furthermore, the data transfers
between the memory and processor is a contributor to a
system’s power consumption, especially for embedded sys-
tems, which have stringent restrictions. Double Data Rate
(DDR) memories have emerged as a major technological
breakthrough, providing the ability of transmitting data at

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MEMSYS 15, October 05-08, 2015, Washington DC, DC, USA

(© 2015 ACM. ISBN 978-1-4503-3604-8/15/10. .. $15.00

DOL http://dx.doi.org/10.1145,/2818950.2818953

both clock edges. Furthermore, the interconnection between
the main memory and the processors improved from a sim-
ple shared bus to dedicated point-to-point interconnections.
Despite these advancements, memory accesses still present a
large challenge for the performance and energy consumption
of modern multi-core processors. Thus, besides the burst
technique, sets of devices are deployed in a module to in-
crease parallelism and increase data throughput. A widely
adopted technique to integrate a large number of devices
is the use of multiple channels and multiple memory con-
trollers. This technique allows memory modules to be used
in parallel, although on a limited bus width per module.

However, even for systems with a high memory band-
width, if we consider streaming applications that present
a high spatial locality and low temporal locality of mem-
ory accesses, the cache hierarchy will represent a waste of
resources in terms of performance and energy consumption.
The reason for this waste is that for most stream appli-
cations, data that is brought into the caches is only used
once and removed as soon as possible to make room for new
data. In cases where the processor is performing bursts of
requests, the prefetch requests will be triggered at the same
time as the normal requests, thus memory prefetchers will
not reduce the average memory access latency [8].

For these two reasons, the concept of near-data comput-

{Memory Bank 7 :
1Device H
' 1
H |
! Bank 4 H
! Bank 3 1
1 Bank 2 !
' Bank 1 \
1| BankO Bank 0 ;
1 |
Rs;\/ : Row-address|16,384 16,384 Rows E
a ress: latch and 14 128 Columns H
! decoder 64b per Column H
' |
Sense Amplifiers : 1/0 H
6451 |nterface
8,192 '
|
1/0 gating E
DM mask logic E
128 :
- -~ (x64) H
! Bank 0 |
| |
| |
Column: Column- E
address; address !
! decoder H
|

Figure 1: DDR 3 x8 functional block diagram of a single
device [11] with our MVX mechanism (in black).

ing aims to remove the requirement of large data movements
between processors and main memory [3]. Moving the logic
closer to the data enables the processing elements to access
wider data widths. This can be explained by internal DRAM
organization. Figure 1 presents an overview of a DDR 3 x8
module. Traditional memory modules are formed by mul-
tiple devices that act in a coordinated way. The devices
are composed of a set of banks, and all the devices react
to an operation signal, always operating in the same bank
for a given signal. These banks are composed of sub-arrays,
formed by rows that are accessed per column [7]. Once a
row is precharged and opened, its data is read by the sense-
amplifiers and becomes available in the row buffers. At this
point, the selected columns from different devices are trans-
mitted via the interconnection to the processor. However,
instead of transmitting this open row, its data could be con-
sumed by near-data processing elements, avoiding the inter-
connection overhead as well as providing access to a wider
amount of data.

In this paper, we present and evaluate the possibility of in-
tegrating Functional Units (FUs) directly inside the DRAM
devices to perform near-data computing. We call this mech-
anism Memory Vector Extensions (MVX), and it is illus-
trated in Figure 1. MVX integrates logic close to the row
buffers, which is triggered by the processor and processes
wide portions of data in parallel. A typical row buffer size
provides 8 KB of contiguous data by multiple devices which
can be processed by a single vector instruction. We also
discuss implementation possibilities and future challenges of
MVX. Compared to previous proposals for near-data com-
puting, MVX combines a small logic with a high bandwidth,
low data movement, and provides general purpose process-
ing capabilities.

MVX is designed to outperform traditional processor vec-
tor instructions for algorithms that present high spatial lo-
cality and low temporal locality, such as applications with a
stream memory access behavior. This is because such appli-
cations cannot benefit from cache memories inside the pro-
cessors to hide the memory access latency and limitations
of the interconnection. We present experimental results in
terms of execution time and energy consumption with three
application kernels with different memory access behaviors
(low, medium and high data re-usage), using several MVX
implementation choices. We also discuss the area overhead
of our mechanism. In terms of performance, our mechanism
is able to provide up to 97x (39x on average) improve-
ment over the baseline system formed by 16 low-power cores.
Regarding energy consumption, MVX consumes up to 70x
(13x on average) less energy than the baseline system with
a moderate area overhead.

2. THE MVX MECHANISM

The main focus of this work is to move the execution of
vector operations from the processor to the DRAM, reducing
the data movement between processor and main memory.
Our Memory Vector Extensions (MVX) obtain data directly
from open rows inside the devices. To take full advantage of
the data available inside the memory devices, we implement
a register bank and a set of vector functional units inside the
DRAM. These new functional units will answer to specific
MVX instructions which we introduce, while the register
bank enables the memory to operate in parallel with our
mechanism.

In this section, we introduce MVX in detail, presenting
the required processor and memory system modifications as
well as the operations of the mechanism. In the description
in the following subsections, we follow the instruction path,
from the binary generation to the actual execution in the
DRAM functional units.

2.1 Overview of MVX

Figure 2 depicts the full data-path of an MVX instruction
from the processor to the DRAM. The new MVX instruc-
tions are fetched and decoded by the processor and then sent
to the main memory to be executed in the DRAM, avoiding
expensive data transfers between the memory and processor.

We assume a memory module formed by 8 devices, each
device containing row buffers of 1024 bytes. With this con-
figuration, each set of row buffers contains 8 KB of data,
which corresponds to 2,048 operands of 32 bit (integer or
single precision FP). In this way, each MVX instruction uses
3 internal registers to perform up to 2,048 operations of the
same type (compared to 16 operations in AVX-512, for ex-
ample). In our model, MVX supports all of the ARM NEON
operations (integer and FP).

2.2 Binary Generation

In order to use MVX instructions, we require no changes
to the source code of an application. However, the code
needs to be recompiled in order to make use of the MVX in-
structions. The automatic vectorization techniques (similar
to the ones present in current compilers [10]) from the com-
piler are extended to make usage of our wider operations.
To avoid resource conflicts, a sequence of MVX instructions
needs to be wrapped by MVX’s lock and unlock instruc-
tions. These instructions will perform a lock in the MVX
structures for a specific thread, unlocking it whenever an
unlock is executed.

2.3 Processor Modifications

In the processor, we require an Instruction Set Architec-
ture (ISA) extension to provide our MVX instructions. The
MVX instructions use a new register bank inside the DRAM
to perform operations. The MVX instructions pass through
the pipeline in the same way as a memory load operation.
MVX instructions that do not require memory addresses,
such as MVX lock and unlock, will bypass the Address Gen-
eration Unit (AGU) and wait to be transmitted inside the
Memory Order Buffer (MOB).

All of the MVX instructions are sent to the MOB to be de-
livered to the memory subsystem. These instructions wait
inside the MOB for an answer from the memory system,
which returns the status of the operation as successful or

Processor Core
Re-Order Buffer

DRAM
Memory

Execution

Rename || Dispatch

Fetch ‘ ‘ Decode

Memory
Order Buffer

Data Cache

|
|
o Memor
Last Level CacheT flrectorj Cmtroler

Figure 2: Data-path illustration of an MVX instruction.

— MVX Instructions

---> MVX Status

raises exceptions. The processor uses these instructions’
status to control execution flags, such as overflow and not-
a-number, among others. MVX instructions that perform
loads and stores work with virtual addresses and therefore
have to be translated by the Translation Look-aside Buffer
(TLB) and checked for correct permissions to access the
given address range. After passing through the TLB, the
requests follow the cache memory hierarchy, bypassing the
memory caches. The cache directory needs to be changed as
well, to ensure a write-back of all the modified data in the
range at which the specific MVX instruction will operate.

2.4 Memory Controller Modifications

In our mechanism, the memory controller is responsible
for handling the instructions and sending them to the DRAM
in-order. This reduces the logic required inside the DRAM.
Furthermore, the MVX instructions use the internal buffers
inside the memory controller to wait until they can be exe-
cuted.

When the memory controller receives the MVX lock oper-
ation, it has to lock the MVX mechanism inside the DRAM
to operate only for the thread that requested the lock. In
case the memory is already locked, the lock instruction from
the requester waits until the DRAM gets unlocked. After a
lock is granted, the MVX instructions are able to perform
their operations. Locking the mechanisms avoids that one
thread modifies the content of registers that are being used
by a different thread. A simple mechanism could make use of
this locking system to power gate or clock gate all MVX re-
sources after a certain period of time, reducing energy over-
head during idle periods. Normal memory access requests
(both read and write) can still be serviced while the MVX
is locked, such that other threads that do not use MVX can
continue to execute normally.

2.5 DRAM Modifications

To perform vector instructions inside the DRAM, we re-
quire two main logic additions to the DDR device, a register
bank and the vector functional units. Figure 3 illustrates
MVX inside a DRAM device. This figure presents a DDR 3
x8 device, even though our mechanism can be easily adapted
for different DDRx device layouts (for example, different row
bank sizes, data bursts, etc.).

The additional register bank inside the DRAM device can
be used to store full row buffers from any bank inside the
device. Each register is capable of handling an entire row
buffer (8,192 bits per device). Thus, open row signals can
be issued to different banks to achieve a higher performance.
MVX interacts with the DRAM only during load and store
operations by copying data to and from the MVX registers.
Therefore, our mechanism does not require new DRAM sig-
nals.

MVX instructions are executed in-order, however, its func-
tional units act as a restricted data-flow processor. A given
operation may start as soon as the registers are ready. To
support that data-flow, we provide a flag associated with
each register that indicates if the operand is ready. Each
MVX instruction needs to erase this flag for its destination
register, and re-enable it whenever the instruction becomes
ready. This system enables the DRAM to open rows from
different banks in parallel, and also ensures that once an
MVX instruction requires operands that are not ready yet,
execution will stall.

r .
Memory Device

E Bank O | | Bank 1 Bank 7
! Row
Address ————
Column -
MVX 1/O gating ‘
l Data DM mask logic

* Address w

/o < o Column MVX Register Bank
! |Interface W.En 8x 8,192

gﬂvé)de MVX Vector

Functional Units

MVX Status

Memory Module /

Y
\
\
\
\
\
\

Figure 3: Memory module with DDR 3 x8 devices show-
ing the modifications required by our mechanism. Sizes are
given in bits.

Upon registers being ready, the functional units operate
in several steps (DRAM cycles) to process the entire row
buffer. The number of steps depends on the number of avail-
able functional units. We further explore the trade-offs of
the number of functional units in Section 3. All functional
units operate at the same frequency as the DRAM device.
After completion, every MVX instruction sends a status to
the processor, such that our instructions behave similar to
a normal memory request. These acknowledgment signals
provide important information for the processor regarding
the status of each operation, such as overflow, division-by-
zero and other exceptions. For instance, in the Intel AVX
instruction set, 17 bits are enough to provide the information
regarding the operation status [6]. During our mechanism
evaluation, we considered an acknowledgment of 64 bits in
order to correctly simulate the impact of this transmission
on the final performance.

3. EXPERIMENTAL EVALUATION OF MVX

This section presents the simulation details, the applica-
tion kernels and the evaluation results comparing MVX to
a baseline system.

3.1 Configuration Parameters and Baseline

To evaluate our MVX mechanism, we used an in-house
cycle accurate simulator. [1, 2]. The simulation param-
eters are inspired by Intel’s Atom processor with the Sil-
vermont micro-architecture. Table 1 shows the simulation
parameters used for our tests. In order to model the energy
consumption, we feed our performance results into the Mc-
PAT 1.3 and CACTI 6.5P energy modeling tools [9]. We
modeled the components with the embedded system and
power gating parameters enabled. Our modeled processor
uses a 32 nm integration technology, while the DRAM and
MVX models use a 45 nm integration technology.

The Atom processor with the Silvermont micro-architecture

only supports SSE 4.2 instructions on up to 8 cores and
2 memory channels. To build a possible future scenario for
comparison, we added support for AVX vector instructions
using 512 bit registers (the same used on Xeon-Phi proces-
sors). We also extrapolated the baseline to include up to
16 cores, and support up to 8 memory channels. As the
MVX hardware is a set of vectorial functional units and a
register bank, we performed the experiments with the MVX
working at the DRAM device operating frequency, with all
the vectorial operations executing in parallel. However, ex-
periments with a reduced number of functional units are
also presented, where execution requires multiple iterations.
We consider the worst case for the performance, where no
pipelining is performed between the iterations.

3.2 Application Kernels

For our evaluations we used three different floating point
applications kernels: A vector sum using three vectors
of 64 MB each. A stencil with 5-points over a matrix of
64 MB, adding up the 5 neighboring elements, multiplying
the result by two and then storing every result in an output
matrix. A matrix multiplication using three square ma-
trices (2 source and 1 result) of 9 MB each. All kernels use
floating-point operands.

The vector sum application represents the most favorable
case for our mechanism since it does not reuse data and only

performs a stream over contiguous vector elements. The
stencil benchmark presents some data reuse and can make
use of the cache memories. The matrix multiplication ap-
plication has a high amount of data reuse, thus benefiting
greatly from the cache memories. The assembly code of the
three application kernels was obtained from the gcc compiler
using auto-vectorization and was then manually adapted to
use MVX instructions.

3.3 Performance Results

Figure 4 evaluates the baseline system performance scal-
ability when the number of memory channels increases, for
the three applications kernels. It also shows the performance
changes for our MVX mechanism with different numbers of
functional units per device. With this experiment, we in-
tend to show the break-even point for the implementation of
MVX when compared to parallel architectures with increas-
ing numbers of memory channels (higher data bandwidths).
For the vector sum, we found that MVX with 256 FUs per-
forms 12.8x faster than a baseline that uses 8 channels and
16 cores. When increasing the amount of data reuse, for
the stencil application, our mechanism still performs 2.7x
faster than the baseline that uses 8 channels and 16 cores.
For the matrix multiplication, which has a high amount of
data reuse, the break-even point occurs with 16 cores with
4 or more memory channels.

These performance results also give us insight regarding

o
80 o 50 = ©
o5 ~ 4500 8
70 2 45 —~r I
A =z 40 - 4000
E60 £ - £ 3500
g 50 £ 30 S 4 23000
'c 40 =25 o - £ 2500
o
230 820 < m § 2000
3 3 . ~ =
E T | E==we Ry SE
& X 10 B89 $
10 5 — 500
0 0 0
1 2 4 8 (256128 64 32 1 2 4 8256128 64 32 16 8 1 2 4 8256128 64 32 16 8
Ch. Ch. Ch. Ch.|FUs FUs FUs FUs Ch. Ch. Ch. Ch.|FUs FUs FUs FUs FUs FUs Ch. Ch. Ch. Ch.|FUs FUs FUs FUs FUs FUs
Baseline MVX Baseline MVX Baseline MVX
16 Threads 1 Thread 16 Threads 1Thread 16 Threads 1Thread

(a) Vector sum.

(b) Stencil.

(c) Matrix multiplication.

Figure 4: Execution time of the kernels, varying the baseline number of channels and number of functional units per device

of MVX.
MW 16 Cores L2 Cache @ Mem. Ctrl. W 16 Cores L2 Cache @ Mem. Ctrl. éig:\)/ll’es LMZVCXache @ Menm. Ctrl.
DRAM OMVX DRAM OMVX 18 -

0.30 0.20 =,

Z 025 =]

.g .g 0.15 g 1
2 0.20 o €
2015 2 0.10 2
S
S 0.0 S <
. >
& & 0.05)
g 0.05 @ 2
wi wi _ w

0.00 0.00
1 2 4 8 (256 128 64 32 128 64 32 16 8
Ch. Ch. Ch. Ch.|FUs FUs FUs FUs FUs FUs Ch. Ch. Ch. Ch.|FUs FUs FUs FUs Ch. Ch. Ch. Ch.|FUs FUs FUs FUs FUs FUs
Baseline MVX Baseline MVX Baseline MVX
16 Threads 1 Thread 16 Threads 1 Thread 16 Threads 1 Thread
(a) Vector sum. (b) Stencil. (¢) Matrix multiplication.

Figure 5: Energy consumption of the kernels, varying the baseline number of channels and number of functional units per

device of MVX.

a project decision considering that our mechanism could be
implemented using fewer functional units, performing the
operations over fewer operands in a multi-iteration way. In
this case, the latency to perform a single operation would
be multiplied, depending on the number of functional units.
For vector sum and stencil, which present zero or low amount
of data reuse, we can observe that even reducing the number
of functional units to 8, our mechanism continues to deliver
a higher performance than the baseline system with a sin-
gle channel and 16 cores. Executing the matrix multiplica-
tion application, our mechanism with half of the functional
units (128 per device) is still better than a system with 1 or
2 channels and 16 cores. We can see with these results that
our mechanism presents a wide design space with sustained
performance gains.

3.4 Energy Results

During the execution, using only one processor core is
enough to achieve high performance gains with MVX, while
the other 15 cores are idle. This reduces the processor power
consumption. On the other hand, the power consumption
of the main memory is increasing due to the execution of
the MVX instructions. On average, the combined power
consumption of the processor and DRAM keeps at the same

Table 1: Baseline and MVX system configuration.

000 Execution Cores

2 GHz; 16 cores, Integration tech. 32 nm;

In-order front-end and commit; Front-end 2-wide;

14 stages (3-fetch, 3-decode, 3-rename, 2-issue, 3-commit);
Buffers: 24-entry fetch, 32-entry decode, 32-entry ROB;
2-alu, 1-mul. and 1-div. integer units (1-3-20 cycle);

1-alu, 1-mul. and 1-div. floating-point units (5-5-20 cycle);
1-load and 1-store functional units (1-1 cycle);

MOB entries: 10-read and 10-write;

Branch Predictor

1 branch per fetch; 8 parallel in-flight branches;

4 K-entry 4-way set-associative, LRU policy BTB;
Two-Level PAs predictor; 16 K-entry BHT, 2-bits;

L1 Data + Inst. Cache

32 KB, 8-way, 2-cycle; 64 bytes line; LRU policy;
MSHR entries: 8-request, 8-write-back, 1-prefetch;
Stride Prefetcher: 1-degree, 16-strides table;

L2 Cache

1 MB shared for every 2 cores, 16-way, 4-cycle;

64 bytes line; LRU policy;

MSHR entries: 16-request, 8-write-back, 2-prefetch;
Inclusive LLC; MOESI coherence protocol;

Stream Prefetcher: 2-degree, 16-distance, 32-streams;

Memory Controller and Interconnection
Bi-directional ring; On-chip DRAM controller;
Open-row first policy, 1-channel;

DRAM Module

DDR3-1333, 8 burst length at 3:1 bus frequency ratio;

8 GB total size; Integration tech. 45 nm; Device@166 MHz
8 DRAM banks, 8 KB row buffer (1 KB / device);

CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

MVX Processing Logic

Operation frequency: 166 MHz; Integration tech. 45 nm;
Latency (cycles): 1-alu, 3-mul. and 20-div. int. units;
Latency (cycles): 5-alu, 5-mul. and 20-div. fp. units;

Up to 256 sets of functional units (int. + fp) / device;

1 register bank / device, with 8 registers of 8,192 bits each;

level.

Figure 5 evaluates the baseline and our mechanism energy
consumption when executing the three applications kernels.
As expected, the energy consumption has a high correlation
with the performance results. MVX reduces the energy con-
sumption by 70x for vector sum, 14 x for stencil and 2x for
matrix multiplication compared to the baseline with a single
memory channel. Higher energy savings could be achieved
by fully disabling unused processor cores or reducing the
number of processor cores present in the MVX system. Mc-
PAT models the same power leakage for idle and executing
cores, which explains part of the higher processor energy
consumption when the execution time increases. However,
for applications with higher data reuse, our mechanism re-
quires extra memory accesses due to the lack of cache mem-
ories, reducing performance and consuming more energy.

3.5 Area Results

MVX can be implemented with different number of vec-
tor FUs, creating a trade-off between performance and area.
Figure 6 presents the estimated area (in mm?) required for
each different implementation of MVX and the baseline sys-
tem with different numbers of memory channels. For our
baseline configuration with 256 FUs, MVX requires about
49 mm? per device, which represents 14% of the total DRAM
size (8 devices). We can observe that with a reduced amount
of functional units per device, the overhead is reduced almost
linearly due to the fixed size of the register bank, which ac-
counts for only 1% of the total DRAM size. In our modeling,
we considered a set of integer units plus ARM NEON units
able to support the all the integer and floating point instruc-
tions. However, a subset of operations could be selected in
order to reduce the logic overhead.

B DRAM OMVX
3000

2500

— 2000
1500
1000
500

0

256 FUs 128 FUs 64 FUs 32 FUs 16 FUs 8 FUs

Area (mm

Figure 6: Area consumption (in mm?) of the DRAM and
MVX for different MVX configurations.

4. FUTURE CHALLENGES

As presented in the previous section, near-data computing
with functional units integrated in the DRAM is capable of
providing substantial performance and energy consumption
improvements. However, for the adoption of MVX, several
implementation issues have to be considered, which are dis-
cussed in this section.

4.1 Interleaved Data on Row Buffers

DRAM devices have a transmission width, which defines
the column size and thus the number of devices needed in a
module to handle requests of a predetermined size (currently,

Memory Module

AAA

Cache Line

(a) Original interleaving granularity with 1 byte
per device.

Memory Module

Cache Line

(b) Proposed interleaving granularity with 8
bytes per device (required by MVX).

Figure 7: Different data interleaving granularities.

a cache line, 64 bytes). Since memory modules usually have
64 pins, the 8-prefetch-burst implemented in DDR 3 will
make the devices answer enough times to constitute the
cache line. Typically, devices have x4, x8 or x16 device
widths. Assuming an x8 width per device, this means the
64 bits sent by the module each cycle are interleaved in the
8 devices, and therefore, integer or floating point values (4
or 8 bytes) are not stored entirely on one device.

This poses an important issue, as our mechanism requires
entire elements to be present in the row buffers of a single
device for calculation. To resolve this problem, we propose
that the memory controller transforms the cache lines before
reading or writing to the module, reordering the information
such that the datum gets interleaved with 8 bytes per de-
vice. Figure 7 illustrates the original interleaving granularity
of DDR 3, where the set of all 8 devices provides 8 bytes of
contiguous data per transmission (Figure 7a). The figure
also shows the proposed interleaving granularity, where on
each transmission non-contiguous blocks of data are trans-
mitted (Figure 7b). This scheme enables each device to store
8 bytes of contiguous data, which can hold full operands
(up to 8 bytes integer or floating point operands) for the
MVX operations. It is important to note that this modifi-
cation changes only the memory controller operation, while
the DRAM still operates in the same fashion, with the same
data burst performance.

4.2 Interleaved Data on Multiple Memory
Modules and Channels
In this paper, we only presented results with our mecha-

nism implemented in a single memory module and a single
channel, which is a common scenario for embedded systems.

However, in order to implement our mechanism in a system
with multiple channels and multiple modules, further inves-
tigation is required. In systems with multiple modules or
channels, an operation might require operands from differ-
ent channels. In this situation, an operand might need to
be copied between the modules, generating additional over-
head. This is a very common unresolved issue with most
near-data computing proposals.

This issue could be resolved by the programmer for a par-
ticular system and application, but it would not fit multiple
systems. Moreover, it should be performed in a synchro-
nized way together with the Operating System (OS). A more
generic solution could be to set a range of page frames on
the memory to have an explicit data mapping in the mem-
ory modules. Thus, with some indication in the algorithm,
the OS could place the Memory Vector Extensions (MVX)
operands in page frames to be mapped to a single mem-
ory module. This solution would require annotations in the
source code, and changes on the Memory Management Unit
(MMU), in order to avoid data transfers between the mem-
ory modules during MVX operations.

4.3 Low Data Re-Usage Requirements

For applications that have none or low temporal locality,
our mechanism avoids the data transfer overhead gracefully.
However, for applications with higher temporal locality, the
mechanism starts to gain less performance due to the extra
DRAM accesses. The register bank inside the DRAM de-
vices can help in this issue by storing the operands to be
used during an MVX transaction (between a lock and an
unlock). Moreover, the register bank also enables the MVX
load/store operations to be performed in parallel with cal-
culations. For the future, we intend to evaluate applications
with low data temporal locality and low spatial locality, such
as databases and graph algorithms, in order to better un-
derstand the behavior of executing scalar instructions near
the data.

5. RELATED WORK

Several studies have discussed near-data computation, gen-
erally aiming to reduce the costs related to data transfer be-
tween the processing units and DRAM. Since off-chip data
movement is a major bottleneck for computer systems [15],
the main goals are usually increasing performance and re-
ducing energy consumption. Table 2 presents an overview
of the characteristics of the related work presented in this
section and our proposal (MVX). MVX provides general
purpose processing capabilities while requiring a reasonable
amount of embedded logic to operate on a high data band-
width.

Table 2: Summary of related work characteristics.

Mechanism Small High General Low data
name logic bandwidth purpose movement
IRAM [12] °

C-RAM [4] . . .
NMP [14] .

LiM [16] ° . .
DRAMA [5] ° . °
NDCores [13] .

MVX

The second column considers the processing element de-
tails used in each proposed implementation. It can be seen
that most previous work relies on a large amount of logic, be-
cause these proposals require full multi-core processors (in-
cluding caches and all pipeline stages) close to the DRAM
devices [13, 14], while MVX requires the addition of only
the functional units themselves in the DRAM. In this way,
MVX can achieve a substantial amount of parallelism while
maintaining a reasonable area and energy consumption. The
third column presents the characteristics related to data
bandwidth of each proposal, showing that only few pre-
vious proposals consider to access the full row buffer [4,
16]. Most previous proposals use the same data bandwidth
present outside the memory devices or memory modules,
that is, their bandwidths are much smaller than the row
buffer width.

The fourth column depicts whether the mechanism sup-
ports executing general purpose operations. Some related
work can only perform very specific operations (such as FFT
for the LiM mechanism [16]), which limits its adoption to
specific algorithms. The last column shows how close to
the main memory each proposal is implemented. In general,
more complex processing elements are implemented farther
away from the memory device due to integration limitations
and power dissipation issues. This implies a reduction of
data access bandwidth and more data movement. Summa-
rizing our analysis, MVX achieves a good balance between
logic size, operation parallelism, and energy consumption.
Regarding the available design space, we consider that MVX
represents an interesting alternative for near-data comput-
ing.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the Memory Vector Exten-
sions (MVX), a new approach to perform near-data com-
puting that is implemented directly in the DRAM devices
over a large amount of data inside the DRAM. MVX is ca-
pable of achieving high performance gains by executing vec-
tor instructions triggered by the processor. Through our
experiments, we showed that MVX is capable of execut-
ing applications up to 97x faster than a 16-core processor.
Moreover, when we reduced the number of functional units
by up to 16x , MVX was still a better choice for applica-
tions with zero or low amount of data reuse. Energy con-
sumption results show that our mechanism has a competi-
tive consumption compared to the baseline. In the future,
we plan to implement our mechanism in a Hybrid Mem-
ory Cube (HMC) environment, which could present different
trade-offs between area and energy consumption. Further-
more, we want to evaluate more complex benchmarks with
different locality patterns.

Acknowledgments
The authors gratefully acknowledge the support of CNPq.

7. REFERENCES

[1] M. Alves. Increasing Energy Efficiency of Processor
Caches via Line Usage Predictors. PhD thesis,
Universidade Federal do Rio Grande do Sul, May 2014.

[2] M. A. Z. Alves, M. Diener, F. B. Moreira,

C. Villavieja, and P. O. A. Navaux. Sinuca: A
validated micro-architecture simulator. In High
Performance Computation Conference, 2015.

[3] R. Balasubramonian, J. Chang, T. Manning, J. H.
Moreno, R. Murphy, R. Nair, and S. Swanson.
Near-data processing: Insights from a micro-46
workshop. IEEE Micro, 34(4):36-42, July 2014.

[4] D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and
R. McKenzie. Computational ram: Implementing
processors in memory. Design and Test of Computers,
IEFEE, 16(1):32-41, Jan-Mar 1999.

[5] A. Farmahini-Farahani, J. Ahn, K. Compton, and
N. Kim. Drama: An architecture for accelerated
processing near memory. Computer Architecture
Letters, PP(99):1-1, 2014.

(6] Intel. Intel ® xeon phi tm coprocessor instruction set
architecture reference manual. Technical report, 2012.

[7] B. Jacob, S. Ng, and D. Wang. Memory systems:
cache, DRAM, disk. Morgan Kaufmann, 2008.

[8] C. J. Lee, O. Mutlu, V. Narasiman, and Y. Patt.
Prefetch-aware dram controllers. In International
Symposium on Microarchitecture (MICRO), pages
200-209, Nov 2008.

[9] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. The mcpat framework for
multicore and manycore architectures: Simultaneously
modeling power, area, and timing. ACM Transactions
on Architecture and Code Optimization (TACO),
10(1):5, 2013.

[10] S. Maleki, Y. Gao, M. Garzaran, T. Wong, and

D. Padua. An evaluation of vectorizing compilers. In

International Conference on Parallel Architectures and

Compilation Techniques (PACT), pages 372-382, 2011.

Micron. 1gb: x4, x8, x16 ddr3 sdram features.

Technical report, 2006.

[12] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,

K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick.

A case for intelligent ram. IEEE Micro, 17(2):34-44,

Mar 1997.

S. Pugsley, J. Jestes, R. Balasubramonian,

V. Srinivasan, A. Buyuktosunoglu, A. Davis, and

F. Li. Comparing implementations of near-data

computing with in-memory mapreduce workloads.

IEEFE Micro, 34(4):44-52, July 2014.

[14] M. Wei, M. Snir, J. Torrellas, and R. B. Tremaine. A
near-memory processor for vector, streaming and bit
manipulation workloads. Technical report, University
of Illinois at Urbana-Champaign, Dept. of Computer
Science, 02 2005.

[15] D. P. Zhang, N. Jayasena, A. Lyashevsky, et al. A new
perspective on processing-in-memory architecture
design. In Workshop on Memory Systems Performance
and Correctness (MSPC), page 71-73, 2013.

[16] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe,

L. Pileggi, and F. Franchetti. A 3d-stacked
logic-in-memory accelerator for application-specific
data intensive computing. In IFEFE International 3D
Systems Integration Conference (3DIC), 2013, pages
1-7, 2013.

[11

13

