
Multi-phased task placement of HPC applications in
the Cloud

Emmanuell D. Carreno, Marco A. Z. Alves
UFPR - Brazil

{edcarreno, mazalves}@inf.ufpr.br

Matthias Diener
UIUC - United States
mdiener@illinois.edu

Eduardo Roloff, Philippe A. O. Navaux
UFRGS - Brazil

{eroloff,navaux}@inf.ufrgs.br

Abstract—Many high-performance computing applications
present different phases during their execution. Nevertheless,
thread and process placement techniques usually provide static-
only methods to improve the data and thread locality. Similarly,
cloud computing datacenters may present variations in terms of
latency over the execution time of applications. To overcome these
two problems, in this paper we analyze scientific applications that
have different communication patterns along with its execution.
For such applications, we evaluate the performance variation of
traditional static placement techniques to our new approach that
uses code annotations to perform the new placement of tasks,
matching also the variations on network performance of Virtual
Machines (VMs) during the run time. For our experiments,
we use applications from the NAS parallel benchmark suite,
running them on two VM sizes with 32 and 64 cores respec-
tively, from the same family of instance types at the West US
datacenter from Azure. Results show that compared to traditional
static process mapping, our multi-phased placement mechanism
achieves average performance gains of 13.57%, up to 28.32%
in the evaluated scenarios. These results show that there is an
opportunity to improve performance by correctly identifying the
network variations and reacting by generating a new task-to-
instance mapping.

Index Terms—Cloud Computing, HPC, Task Mapping, MPI,
NAS, Network Variability

The advent of cloud computing allowed several new use
cases for computing on demand. Storing, processing and
transferring data became a utility charged by the number of re-
sources consumed. For this reason, performance improvement
techniques are critical to reducing costs.

The growth of cloud computing in the last years is
creating new opportunities for different computing market
segments [1]. One of those segments is the use of cloud
computing for High-Performance Computing (HPC), moving
from in-house data centers and clusters with homogeneous
hardware and interconnections to a highly dynamic and shared
environment. The users of cloud services have very little infor-
mation about the hardware in which their virtual machines are
allocated and have almost no information about the network
topology and interconnection technology [2]. The amount of
resources shared inside the physical machine or its level of
utilization is also unknown. Other users’ interference may
impact applications from a tenant due to multiple users sharing
some resources, causing contention for this resources on the
same physical machine, and in some cases degrading network

performance or impacting the availability of allocation for new
virtual machine instances.

During cloud applications execution, the users cannot access
the allocation information, counters, and metrics available on
the VM; low-level metrics of the bare machine are used only
by the provider to maintain the QoS offered in the contract
or service level agreement (SLA). However, for some users,
the available VM information may be not enough for their
performance improvement mechanisms [3], [4], and until users
gain access to dedicated performance counters, the best option
for any tenant is to use any measurable metric about the
underlying hardware or technology used by the provider.

In this context, previous work [5] implemented a mechanism
to improve the communication performance of parallel scien-
tific applications. This previous work measured the network
performance at the data center in which the VMs are allocated
and feed this information into a task mapping mechanism to
reduce the benchmark’s time to solution. The main difference
to the previous work is the multi-phase analysis, the first step
towards an online network-performance aware task placement
solution.

However, by considering only the networking variations
in the cloud datacenter, may not be enough to achieve the
maximum performance for HPC applications. One reason is
that HPC applications often present multiple phases during its
execution. Each phase the application may present a different
behavior in terms of resources usage and communication
pattern. Thus, a static task mapping may lack opportunities
in terms of performing the best task-to-instance mapping.

In this paper, we use information about the current network
status to improve the communication speed of parallel appli-
cations. We discuss how gains obtained by a task mapping
mechanism are affected by the metric selected to measure the
network status. We also show how changes in the application
communication behavior can degrade performance caused by
the lack of adaptability of current task mapping approaches.
The main contributions of this paper are three-fold:

• An analysis of which NAS benchmarks benefit more
from different networking metrics used to perform task
mapping on a public cloud service.

• A quantitative comparison of the impact of using the
incorrect task mapping on the distinct computing phases
of a synthetic scientific application.

103

2019 18th International Symposium on Parallel and Distributed Computing (ISPDC)

978-1-7281-3801-5/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPDC.2019.00023

• An approximated measurement of the performance gap
on the execution of multi-phased applications.

Results show that we could improve the previous work
approach by 13.57% when we consider the distinct application
phases in the task mapping mechanism.

I. MOTIVATION AND PROPOSAL

In order to improve the performance of scientific applica-
tions using its inherent communication network characteristics,
it is necessary to correctly identify its underlying patterns and
the current state of the cloud network. Measuring and correctly
using such information by task mapping techniques could help
reduce the impact of a sluggish network.

A task mapping algorithm may use the information available
from two sources of heterogeneity affecting communication
performance. The first source comes from the heterogeneity
in hardware topology in the cloud network that causes that
some elements of the environment to communicate faster than
others. The second source comes from the communication
behavior heterogeneity from each application, which causes
that some pairs of tasks perform more communication between
them compared to other processing tasks. However, in the
cloud, not every hardware aspect is known to the tenant; for
this reason, it is possible to retrieve only partial networking
information.

A. Network Variability

A cloud data center may have several sources of hetero-
geneity notably by hardware differences and by application
load from other tenants, creating variations on the network
performance over time. Other factors of variability may in-
clude sudden access peaks, daily usage cycles, and load-
balancers [6]. Because all of these factors depend on what
other tenants deployed on the same data center do, we (as
tenants too) are unable to determine when they are going
to happen. To illustrate the behavior mentioned above, we
profiled the network variations over bandwidth and latency
over 23h in the network performance of 4 cloud instances at
the same data center.

Figure 1 shows the measurements for two network metrics,
bandwidth, and latency on a pair of instances. The communica-
tion measurement was performed VM to VM using MPIBench,
an open source benchmarking tool [7]. The experiment shows
that along a day the performance of the two metrics is
variable and there are differences between instances, that is,
we can see that at the start of the experiment the bandwidth
performance of the pair VM01-VM02 was improving slowly
while simultaneously the same metric was degrading quickly
for the pair VM02-VM04. This behavior of heterogeneous
networks is recurrent on public clouds [8], [9], [5].

B. Cloud Mapping

To improve the performance of applications under such
variable network conditions, some techniques were proposed
in the past [10], [11], [12], [13]. Using a mechanism developed

VM01-VM02 VM02-VM04

B
an

d
w
id
th

L
aten

cy

06h 12h 18h 00h 06h 12h 18h 00h

25000

50000

75000

10

20

30

40

50

Fig. 1: Network variability of latency [ms] and bandwidth
[Kbps] over 23 hours from two pairs of cloud instances, VM01
with VM02 and VM02 with VM04, the blue line shows an
approximation of their behavior.

in a previous work [5], we performed experiments to moti-
vate our proposal. This mechanism allows statically mapping
processes with higher communication demands to nodes with
better network performance.

For the analysis of the cloud mapping performance, we used
a benchmark that simulates a Computational Fluid Dynam-
ics (CFD) application. This benchmark (SP - Scalar Penta-
diagonal solver) is part of the NAS parallel benchmark suite,
which was developed by NASA to test computational charac-
teristics of High-Performance Computing (HPC) clusters [14].

Figure 2 shows the average results of executing the SP
benchmarks using the two base metrics for the tool, bandwidth,
and latency, compared with running the benchmark without
using any information about the current network performance.

Extracting information about the current state of the network
allows improving the performance of an application [5]. Even
with the limited information available for the tenant, limited
compared with the bare metal information that the cloud
provider has access to, it is possible to implement mechanisms
to profile such state and improve upon that. However, this tech-
nique does not take into account changes on communication
behavior during execution.

104

Bandwidth Latency No Mapping

150

300

450
E

xe
cu

tio
n

Ti
m

e
[s

]

Fig. 2: Performance results using different mappings using 256
tasks and NAS size C.

This experiment also indicates that there are no significant
improvements on network variability that may come from
changes in infrastructure or updated datacenter hardware after
three years from the initial release of CloudMap.

C. Application phases

Various HPC applications, such as Poisson equation solver,
relies on various algorithms during its execution. In such cases,
a static placement technique waste opportunities because it
will be unable to obtain the maximum performance from
the matching between application communications pattern and
network metrics, as it varies along the time.

To simulate the behavior of a multi-phased application,
an application needs to change its communication pattern
along its execution time. Figure 3 shows the communication
matrices for three different scenarios with 64 processes, where
darker color represent points where more communication
happened between two processing tasks. The first matrix on
Figure 3a present the communication between processes over
the complete application execution, calculated as the matrix
addition of the communication matrices of both benchmarks.
Thus, considering a theoretical application performing CFD
simulation with two phases. Figures 3b and 3c present the
distinct behavior for each phase of such application.

In this section, we showed that network variability is still
an issue that needs to be addressed. One way of mitigating
its impact may be by using the available metrics improving
communication performance. Nonetheless, regarding the ap-
plication executed we were looking for improvements by ana-
lyzing which best metric suites better each type of application
and, also by examining what happens when the underlying
communication pattern changes.

II. METHODOLOGY

In this section, we will detail each part of our proposal and
explain their duty on the solution.

A. NAS benchmarks

To evaluate the impact of a proposal on different applica-
tions we ran our experiments using the MPI implementation
of the NAS parallel benchmark suite [14], version 3.3.1.
Each one of the benchmark applications was developed to
represent specific computational and data movement aspects
encountered on scientific applications [15].

8

16

24

32

40

48

56

64

8 16 24 32 40 48 56 64

(a) MG+CG

8

16

24

32

40

48

56

64

8 16 24 32 40 48 56 64

(b) MG

8

16

24

32

40

48

56

64

8 16 24 32 40 48 56 64

(c) CG

Fig. 3: Communication matrices for MG and CG kernels from
the NAS benchmarks. (a) shows the communication matrix for
an application with two different processing phases. (b) and
(c) are the two phases that compose (a).

Regarding the communication of each benchmark, they can
be divided into three categories using the type of messages
interchanged between their processes. BT, CG, LU, MG, and
SP benchmarks use mostly point-to-point messages. FT and IS
use mostly collective messages to communicate between their
processes. EP performs communication between its tasks only
at the end to compute the final result. These eight benchmarks
were executed for all the experiments.

To obtain the communication matrix for each NAS bench-
mark we used EZTrace [16], which automatically instruments
MPI-based applications. We created the communication matri-
ces using two metrics, the number of interchanged messages
between tasks and the volume of such messages. This step was
performed offline, and its result was reused for every execution
of the same benchmark.

B. Mapping strategies

The evaluation was conducted using seven different map-
ping strategies. The first three use a reorganization of the
rank allocation without any additional information about the
network conditions:

default: The default mapping allocation performed by
OpenMPI uses a round-robin fashion, where every task is
allocated on the first available node until all slots available
are full in that node and then goes to the next node available.

random: The algorithm generates a rank file that allocates
all the tasks on any of the available nodes without any defined

105

priority. This mapping strategy also helps in finding any
abnormality on the other allocation proposals.

interleave: The tasks are allocated in order by node, that
means the first node in the order defined by the MPI frame-
work receives the first for allocation on it, then, the second
node receives the second task, and so on until all task are
allocated on all the available slots. Sometimes also called
Cyclic.

The next four mapping strategies use CloudMap with the
actual measurements of the current network performance using
one of two different sources of variability, latency (lat) or
bandwidth (bw). For each source of variability, we used the
values from the two metrics of the profiled communication
patterns available for each benchmark, the number of messages
(num) or volume of data interchanged between tasks (vol), this
allows us to test the followings strategies:

bw-num: Uses bandwidth and number of messages.
bw-vol: Uses bandwidth and volume of messages.
lat-num: Uses latency and number of messages.
lat-vol: Uses latency and volume of messages.

C. Deployments

Previous work [5] showed that network variability also
depends on particular aspects of the data center in which the
VM instance is allocated. To reduce this additional source of
variability, that regional usage aspects of every data center
location may introduce, we evaluated our proposal at only one
data center located on the west of the United States (West US
Region).

The VMs selected are part of the most up-to-date offered by
the cloud provider. We used two different instance sizes from
the same performance series shown in Table I. Benchscore is a
metric to compare the performance of VMs. The metric is the
resulting value of a resource-intensive benchmark provided by
Microsoft for each one of their VM sizes [17]. The selected
VM sizes have a good balance of memory, CPU performance
and networking specifications, suitable for the requirements
of the NAS benchmarks. We will use a short version of the
name for every VM instance in this paper. The specifications
from the cloud provider indicate that D64v3 is, in essence, a
virtual machine with twice the computing power and network
bandwidth than D32v3.

The process of instantiating and deallocating the VMs
was performed using in-house developed scripts that allowed
reproducibility of the experiments. We used the Linux dis-
tribution Ubuntu 16.04 LTS, Kernel version 4.15.0-1037 and
OpenMPI version 1.10.2. Every experiment was initiated and
controlled using a central VM instance that did not take
part in the processing an also acted as a cloud front-end to
allow monitoring the status of the experiment without creating
interference.

Network communication between VMs is performed using
flat network topology. In total, we used 256 CPU cores for
computing on each deployment, eight instances of 32 cores
for D32v3 and four instances of 64 cores for D64v3.

TABLE I: Main characteristics of the Cloud Instances used.

VM Size VMs Benchscore Cores/VM Network speed

Standard_D32_v3 8 309021 32 16000 Mbps
Standard_D64_v3 4 613424 64 30000 Mbps

D. Mechanism

To perform the actual task mapping we used CloudMap [5].
CloudMap is a tool that allows analyzing the current state of
network performance using both bandwidth and latency be-
tween all the user’s allocated VMs. The information gathered
by the tool creates a network performance matrix, using this
information and a previously obtained application communica-
tion pattern can generate an MPI rank file. Using this approach,
we can create groups of tasks that communicate more into the
VMs that have better network performance between them. The
mechanism was modified to receive a specific static application
communication matrix at runtime, the profiled number or
volume of messages. Current state measuring is performed
between all nodes, in an all to all fashion. A drawback for the
scalability of this approach is that it is limited by the network
bandwidth and by the number of nodes in the deployment.
The results obtained by combining this four-part methodology
are discussed in the next section.

III. RESULTS

First, we will show the results of executing each NAS
benchmark using the seven task mapping strategies. Then,
we will discuss the impact on applications phases performing
task mapping on three scenarios. Previous work [5] showed
that the overhead of the mapping strategy is 0.69 seconds
on average for eight instances, the calculated execution time
does not include this value. After that, we will show how
those benchmarks can perform when executing in a sequential
fashion that we call bundle, simulating different stages of
a scientific application. And finally, we use these results to
calculate improvements in potential task migration scenarios.

A. NAS benchmarks

As mentioned in Section II-B, the mapping scenarios are
Default, Random, Interleaved, Bandwidth and number of mes-
sages (bw-num), Bandwidth and volume of messages (bw-vol),
Latency and number of messages (lat-num) and Latency and
volume of messages (lat-vol). Performance results of using
these mapping strategies are shown in Table II while the
analysis of each scenario will be explained with the Figures.

Figure 4 shows the results normalized to Default, there are
ten executions for every task mapping scenario, along almost
127 hours for D32v3 and 115 hours for D64v3 VMs. This
interval of time may include daily variations caused by tenants
usage on the local data center region.

We can observe that for some of the benchmarks the mech-
anism improves the performance by reducing the execution
time of the application. However, not all of the task mapping
approaches are reducing execution time by the same amount;
some of them even impact their performance negatively.

106

TABLE II: Performance results of the NAS benchmarks with input data size C and D on cloud deployments of D32-v3 and
D64-v3 instances. Values shown are the geometric mean of at least 10 executions in seconds.

Instance
Size

NAS
Size

Rank
Mapping

Profile
Type

Comm
Metric

Benchmark

BT CG EP FT IS LU MG SP

D32-v3

C

default none none 29.7536 23.9289 1.3286 20.4254 5.9924 36.1243 4.6449 39.8769
random none none 32.3274 48.8427 1.3484 18.1698 3.7386 54.8401 4.4137 49.3949
interleaved none none 29.3538 44.7635 1.3357 17.9333 3.9023 44.4580 4.0735 43.3714

scotch
num bandwidth 29.7676 46.6722 1.3384 18.2950 3.7910 52.7764 4.4362 45.3896

latency 22.4867 20.1665 1.3387 18.2219 3.7810 31.8359 3.5784 32.1054

size bandwidth 29.6184 48.7118 1.3261 18.1428 3.7374 49.9181 4.4546 47.7415
latency 31.3813 47.0324 1.3429 18.1756 3.8111 50.8057 4.1085 47.8391

D

default none none 321.8664 212.7627 20.3128 208.4309 26.9994 257.7411 42.0286 505.3501
random none none 337.3782 430.7862 20.3022 203.7957 23.5531 335.7089 40.4548 514.2740
interleaved none none 322.9150 400.9783 20.3949 201.6204 23.1649 294.6353 38.9205 500.1284

scotch
num bandwidth 341.1078 405.3995 20.5828 205.9066 27.2643 331.7393 41.0833 498.3493

latency 303.7208 200.1455 20.3968 204.7435 27.0185 247.3231 37.9792 459.5020

size bandwidth 329.8056 406.5129 20.4425 204.4810 27.5156 319.3964 40.1179 505.5926
latency 336.6124 410.0144 20.3811 206.4881 27.3741 323.3661 39.2909 501.5793

D64-v3

C

default none none 27.5845 25.2198 1.2386 24.1031 5.1791 31.4335 3.2507 32.8213
random none none 35.6062 56.7521 1.2495 19.8719 4.3384 58.6961 3.8031 56.3047
interleaved none none 33.0472 45.1456 1.2362 20.5406 5.2690 48.1260 2.8302 50.2464

scotch
num bandwidth 29.7168 45.0079 1.3316 20.2451 4.2578 47.8185 3.4045 44.5116

latency 21.2172 16.7012 1.3413 20.7085 4.4661 28.4378 2.6570 27.3097

size bandwidth 32.1365 42.5841 1.2225 20.2275 4.3909 46.3115 3.7898 44.3950
latency 28.3604 46.2326 1.6542 20.5370 4.5940 46.0683 3.4692 43.9499

D

default none none 314.6325 238.9455 19.3585 262.1599 33.2924 232.0928 40.8623 464.0513
random none none 340.8709 551.5821 19.5452 249.6640 30.2030 321.0081 36.6701 465.8618
interleaved none none 329.7481 423.7369 19.4710 242.6714 29.3039 296.3761 30.6474 451.6384

scotch
num bandwidth 337.7699 447.5160 18.8907 252.1807 31.8865 286.0136 33.7296 430.0693

latency 267.6051 206.9754 19.3122 252.0348 31.9092 209.8749 30.2986 372.4798

size bandwidth 331.2000 446.2056 19.2685 251.7218 31.6197 280.6028 34.2415 417.6780
latency 335.5737 446.1213 19.3483 251.7108 31.7285 299.3473 31.6934 417.9733

In the case of CG and LU, they only show improvements
using lat-num (up to 16% faster). These two benchmarks have
mostly point-to-point communication with a large number of
messages, so improvements using latency make sense. CG is
sensitive to long-distance communication; this fact explains
why the best task mapping was achieved using latency plus
the number of messages interchanged on its communication
matrix. CG Depends on the availability of both high bandwidth
and low latency [18]. However, using lat-vol does not generate
significant improvements. This result is a clear indicator that
using only a single metric provides marginal improvements in
some scenarios.

BT, LU, and SP perform mostly point to point communi-
cation too. However, their results are slightly different. Their
performance improves by lat-size too (up to 24% faster), but
the other mappings do not produce a significant performance
drop as in the case of CG and LU. Their communication
pattern is less sensitive to bandwidth than CG, and for this
reason, a fraction of the improvements come from intra-
mapping optimizations.

FT and IS use mostly collective messages and obtain
improvements up to 36% for IS on NAS size C. Most of the
performance improvements come from better intra-instances
task mapping. EP did not have any improvements; the fact that

bt cg ep ft is lu mg sp
0 %

100 %

200 %

Random bw-num lat-num
Interleaved bw-vol lat-vol

bt cg ep ft is lu mg sp
0 %

100 %

200 %

Random bw-num lat-num
Interleaved bw-vol lat-vol

Fig. 4: Normalized execution time of D32v3 using NAS input size C (left) and using NAS input size D (right). Values lower
than 100% mean faster execution time than baseline.

107

bt cg ep ft is lu mg sp
0 %

100 %

200 %

Random bw-num lat-num
Interleaved bw-vol lat-vol

bt cg ep ft is lu mg sp
0 %

100 %

200 %

Random bw-num lat-num
Interleaved bw-vol lat-vol

Fig. 5: Normalized execution time of D64v3 using NAS input size C (left) and using NAS input size D (right). Values lower
than 100% mean faster execution time than baseline

EP performs almost no communication during its execution
explains the result obtained.

Figure 5 shows the results for D64v3. The first thing to
notice is that results from Random are worse on this VM
instance size. Results are consistent with those from D32v3,
with performance improvements only in some benchmarks.
The important takeaway from these results is validating lat-
num as a blend metric that allows improving performance in
most of the cases for the NAS benchmarks. In the cases that
lat-num is not the best metric, the results obtained are not
distant from the better metric. The results showed that we
could use lat-num as a default metric for the task mapping
mechanism to improve performance on NAS applications.
Another important aspect is to analyze if the performance
was stable or there were fluctuations during the experiments.
The network variability, as showed previously in Figure 1,
may impact some experiments more than others depending on
whether they are more sensitive to latency, bandwidth or both.

Figure 6 shows concisely the variability of the results using
a box plot. In most of the cases, the variability is higher on
bandwidth dependent tests. Is also noticeable that D64v3 is
more stable over the several variations of the task mapping
experiments. Notice that results became more stable for bigger
NAS input sizes.

B. Application Phases

After identifying lat-num as the best of the proposed ap-
proaches for task mapping we need to look into the follow-
ing scenario. What happens whenever an application present
changes its communication pattern (i.e., when it presents
multiple phases) and how can our technique react to those
changes using only the available information as a tenant.
Such changes can be annotated inside the application code,
signaling our mapping technique to measure the current state
and perform a new task mapping allocation.

Phases can represent parts in scientific applications that
have iterative processing stages where its communication

D
ef

au
lt

In
te

rl
ea

ve
d

R
an

do
m

bw
-n

um

bw
-v

ol

la
t-

nu
m

la
t-

vo
l

250

275

300

325

350

R
un

tim
e

[s
]

D32v3 D64v3

D
ef

au
lt

In
te

rl
ea

ve
d

R
an

do
m

bw
-n

um

bw
-v

ol

la
t-

nu
m

la
t-

vo
l

180

220

260

300

340

R
un

tim
e

[s
]

D32v3 D64v3

Fig. 6: Performance comparison of using different task mapping mechanisms on the BT benchmark (left) and LU benchmark
(right) with input size D, on a cluster of D32v3 or D64v3 instances

108

pattern changes when it starts. When such a situation happens,
the application may synchronize using a barrier to load or
communicate new data to continue processing; this resembles
multiple executions of several algorithms inside an application.
Joining several phases together form a bundle. To simulate
such behavior we analyzed the same bundle of applications in
three scenarios:

• Without using any task mapping
• Task mapping only for the first execution phase
• Perform task mapping before every phase in the bundle
The main idea of task mapping at every phase execution

is to recalculate the state of the network and improve upon
that information by generating a new rank file specifying in
which node allocates each task should at that moment. A
scientific application consists of several phases, and by using
the mechanism evaluated until now, we had no way to react
to such changes.

C. Performance Impact

An incorrect task mapping generated by using network char-
acterization only at the start of the application and not chang-
ing the mapping even when the application communication
pattern changed can lead to degraded performance. In order to
understand the performance impact of incorrect task mapping,
we ran every benchmark using the communication pattern
from all the other benchmarks. By doing so, we obtained an
impact matrix that helps to evaluate the performance loss due
to wrong mapping on multi-phased applications.

Table III shows the normalized results of running the
benchmarks with the incorrect phase. In some cases, such as
when an LU phase occurs after an initial CG phase, the impact
causes a performance hit that slows down the application
up to 2.95x. On average the improvements are near 1% on
average, those can be due to fluctuations caused by the variable
nature of the cloud at the data center network, and not actual
improvements achieved by using the wrong communication
matrix. By using the impact matrix, we can estimate the
execution time wasted by an application as a penalty for using
the wrong communication task mapping.

TABLE III: Normalized results of the impact of using the
communication pattern from another benchmark, D64v3 -
Size D.

bench Mapping Source (latency + number of messages)

bt cg ep ft is lu mg sp

bt 1.0000 1.1143 0.9815 0.9899 0.9879 1.0412 1.2156 1.0492
cg 2.0841 1.0000 0.9977 1.2080 1.2043 2.2560 1.7589 2.1601
ep 1.0058 1.0050 1.0000 1.0085 0.9920 0.9894 0.9966 0.9977
ft 1.0173 1.0269 1.0007 1.0000 0.9982 1.0276 1.0203 1.0252
is 0.9824 1.0299 1.0003 0.9949 1.0000 0.9922 0.9960 1.0084
lu 1.0106 1.1920 0.9396 0.9425 0.9503 1.0000 1.4486 1.0254
mg 1.2017 1.0564 1.0397 1.0220 0.9853 1.0855 1.0000 1.1387
sp 0.9981 1.0800 0.9885 0.9864 0.9841 0.9987 1.1950 1.0000

D. Performance gap

The performance gap is the time difference of executing a
task mapping allocation on a multi-phased application using
only a measurement of the current network performance at the
application start versus measuring every time the application’s
communication pattern changes.

To illustrate several cases we used four NAS benchmarks
selected at random without repetition from the benchmarks
that are point-to-point communication-based. The worst case
may include repeated NAS benchmarks/kernels. We did not
consider EP and IS, both collective communication based,
as their impact was negligible to the other benchmarks as
shown in III. Figure 7c shows a 6.87% increase on total
execution time caused by performing task mapping only at the
execution start and a reduction of 23.03% when the mapping
is calculated during runtime at every code annotation. A
similar result is achieved in the other two scenarios proposed
in Figure 8. The negative impact on Figure 7b is 17.17%,
and the improvement achieves 28.32%. On Figure 7a, total
execution time takes 8.20% more with Only First mapping
and an improvement of 26.05% using At Every communication
pattern change. The performance gap allows us to estimate the
percentage of time available to perform algorithm improve-
ments in the future, i.e., migrating tasks between VMs in the
same deployment.

No Map Only First At Every
0

50

100

LU CG BT MG

No Map Only First At Every
0

250

500

750

1,000

1,250

MG CG LU SP

No Map Only First At Every
0

50

100

BT LU SP CG

Fig. 7: Performance gap on running three bundle of four NAS benchmarks comparing their execution time when using the
three different scenarios. The vertical axes show execution time in seconds.

109

IV. RELATED WORK

Some authors have researched some of the topics mentioned
in this paper, to compare our work with theirs we split their
contribution into three parts. The first describes previous work
on task mapping using clusters or cloud infrastructures. The
second part shows work on the study of Network variability in
the cloud. The third shows how cloud infrastructures have been
used or evaluated by their suitability to run HPC applications.

A. Task Mapping:

The work of Rak et al. [19] presented the cMe (cloud MPI
enabler) which builds cloud-based cluster on cloud providers.
Their work relies over the mOSAIC platform, that builds
a PaaS over cloud providers. However, the authors do not
provide experimentation’s and their work present only the def-
inition of the cMe.Chanchio and Thaenkaew [3] proposed the
Time-bound thread-based Live Migration (TLM) mechanism
for VM migration. They aim to minimize the downtime and
the impact to other VM during the migration process; They
develop a prototype of TLM over KVM. They demonstrate
that TLM can migrate both OpenMP and MPI versions of
half of the NAS benchmarks Suite.

Vu and Hwang [4] proposed a VM algorithm that minimizes
the communication cost and reduces the energy consumption.
Their algorithm could reduces the network traffic congestion in
a simulated data center, however the energy consumption was
unmodified. The work of Saad and El-Mahdy [2] proposes an
analytic model that aims to identify the network characteristics
between VM, by performing a set of point-to-point automated
tests.

B. Network Variability:

The work of Persico et al. [20] measured the network
performance of Inter Datacenter communication, for AWS and
Azure providers. They deployed VM instances on five different
geographic locations and performed throughput and latency
tests. They conclude that the latency is comparable on both
providers and the throughput is around 50% better on Azure.

Regarding intra-cloud performance, the work of Persico et
al [9] aims to create a methodology to identify the network
throughput and applied it to Azure. They performed several
tests over time and were able to conclude that the network is
stable over time when the instances were deployed and not
reallocated. Instances with bigger sizes performed better than
the smallest ones as well.

The work of Filer et al. [21] provides an in-depth analysis
of the Elastic Optical Networking (EON). Their focus is on
how Microsoft’s Azure could leverage the recent advances in
Optical Network to improve the overall communication of the
cloud service.

C. Cloud for HPC:

The work of Prabhakaran and Lakshmi [22] evaluate the
cost-benefit of using Amazon, Google and Microsoft cloud
instances to execute HPC jobs instead of the SahasraT super-
computing from Indian Institute of Science, the cost-benefit of
the supercomputer were better than the cloud. They calculated

a cost of US$ 0.0126 per core per hour using 100% of the
supercomputer uninterruptedly for five years and compared
to the cost of the cloud instances. However, since the cloud
instances are available in an on-demand base, the authors
do not provide production data of the utilization rate of the
SahasraT, the cost comparison could change.The work of
Kotas et al. [23] compared the AWS and Azure as a platform
for HPC, they evaluate one instance of each provider and build
several cluster configurations, varying from 1 to 32 nodes.
The authors executed the HPCC and HPCG benchmarks suite.
They found that the AWS instance offers a better performance
rate per dollar and Azure offers better bandwidth. And the user
needs to identify which provider is best suitable for a given
application.

Aljamal et al. [24] compared Azure, AWS, Google Cloud
and Oracle Cloud as a platform for HPC. The authors made
a comparative analysis of the provider’s offers. However, they
did not perform a simulation. They concluded that there is not
a cloud provider that fits all user requirements.

Different from the related works, where the authors have
focused on task mapping or network performance, our work
provides a model that combines the task mapping with the
network performance of public cloud to provide better perfor-
mance for HPC applications.

V. CONCLUSIONS

Despite improvements on several performance aspects on
cloud data center infrastructures over the years, network vari-
ability on latency and bandwidth remains as an issue.

In this paper, we evaluated several metrics that allowed
improving performance on scientific parallel applications over
a public cloud infrastructure. We evaluated our proposal using
a set of parallel benchmarks running on an actual public cloud.
In our analysis, we identified that using the instantaneous
latency on the cloud network and the volume of messages
interchanged by an application provides the best results for the
evaluated benchmarks. Average results from the two VM sizes
achieved 13.57% using latency and number of messages as the
best metric for CloudMap. Regarding the impact of incorrect
task mapping allocation, results showed degraded performance
up to 2.96x on a specific benchmark and up to 19.98% when
an application has several distinct phases. In contrast, using a
correct allocation for every phase using our proposal, we can
achieve improvements of up to 28.32%. From these results
we can conclude that in most cases there is enough time to
perform a task migration while still improving total execution
time and reducing costs. Our experiments showed that there
is room for improvement on the task mapping algorithm used,
and also explained how the different application phases may
benefit from those improvements to obtain more performance
gains. The only downside of the proposed approach is that
benchmarks and applications that are inherently point to point
communication based can benefit more from the mechanism.
Our results also showed that our proposal is a solution to
reduce in part the cloud network bottlenecks caused by the
shared resources model that the cloud infrastructures offer.

110

ACKNOWLEDGMENT

This work was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) -
Finance Code 001.

REFERENCES

[1] B. Varghese and R. Buyya, “Next generation cloud computing,” Future
Gener. Comput. Syst., vol. 79, no. P3, pp. 849–861, Feb. 2018.

[2] A. Saad and A. El-Mahdy, “Network Topology Identification for Cloud
Instances,” in International Conference on Cloud and Green Computing,
2013, pp. 92–98.

[3] K. Chanchio and P. Thaenkaew, “Time-bound, thread-based live mi-
gration of virtual machines,” Int. Symp. on Cluster, Cloud, and Grid
Computing, pp. 364–373, 2014.

[4] H. T. Vu and S. Hwang, “A Traffic and Power-aware Algorithm for
Virtual Machine Placement in Cloud Data Center,” International Journal
of Grid and Distributed Computing, vol. 7, no. 1, pp. 350–361, 2014.

[5] E. D. Carreno, M. Diener, E. H. Cruz, and P. O. Navaux, “Automatic
Communication Optimization of Parallel Applications in Public Clouds,”
Proceedings - 2016 16th IEEE/ACM International Symposium on Clus-
ter, Cloud, and Grid Computing, CCGrid 2016, pp. 1–10, 2016.

[6] L. Zuo, S. Dong, L. Shu, C. Zhu, and G. Han, “A multiqueue inter-
lacing peak scheduling method based on tasks’ classification in cloud
computing,” IEEE Systems Journal, vol. 12, no. 2, pp. 1518–1530, June
2018.

[7] D. Grove and P. Coddington, “Precise MPI performance measurement
using MPIBench,” in Proceedings of HPC Asia, 2001, pp. 24–28.

[8] G. Wang and T. S. E. Ng, “The impact of virtualization on network
performance of amazon ec2 data center,” in 2010 Proceedings IEEE
INFOCOM, March 2010, pp. 1–9.

[9] V. Persico, P. Marchetta, A. Botta, and A. Pescape, “On network
throughput variability in microsoft azure cloud,” Global Communica-
tions Conference, no. ii, 2015.

[10] J. Sonnek, J. Greensky, R. Reutiman, and A. Chandra, “Starling: Min-
imizing Communication Overhead in Virtualized Computing Platforms
Using Decentralized Affinity-Aware Migration,” in Int. Conf. on Parallel
Processing, sep 2010, pp. 228–237.

[11] J. Slawinski, U. Villa, T. Passerini, A. Veneziani, and V. Sunderam,
“Issues in Communication Heterogeneity for Message-Passing Concur-
rent Computing,” in Int. Symp. on Parallel & Distributed Processing,
Workshops and Phd Forum, 2013, pp. 93–102.

[12] A. Gupta, L. V. Kalé, D. Milojicic, P. Faraboschi, and S. M. Balle,
“HPC-aware VM placement in infrastructure clouds,” in Int. Conf. on
Cloud Engineering, 2013, pp. 11–20.

[13] L. Yin, J. Sun, L. Zhao, C. Cui, J. Xiao, and C. Yu, “Joint Scheduling
of Data and Computation in Geo-Distributed Cloud Systems,” in Int.
Symp. on Cluster, Cloud and Grid Computing, 2015, pp. 657–666.

[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[15] S. White, A. Alund, and V. S. Sunderam, “Performance of the nas
parallel benchmarks on pvm-based networks,” Journal of Parallel and
Distributed Computing, vol. 26, no. 1, pp. 61–71, 1995.

[16] F. Trahay, F. Rue, M. Faverge, Y. Ishikawa, R. Namyst, and J. Dongarra,
“EZTrace: a generic framework for performance analysis,” in Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
2011, pp. 618–619.

[17] M. Azure, “Compute benchmark scores for linux vms,”
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/compute-
benchmark-scores, Apr. 2019.

[18] J. Dongarra, M. A. Heroux, and P. Luszczek, “Hpcg benchmark: a new
metric for ranking high performance computing systems,” Knoxville,
Tennessee, 2015.

[19] M. Rak, M. Turtur, U. Villano, and L. Pino, “A portable tool for running
MPI applications in the cloud,” Int. Conf. on Intelligent Networking and
Collaborative Systems, pp. 10–17, 2014.

[20] V. Persico, A. Botta, A. Montieri, and A. Pescapé, “A first look at public-
cloud inter-datacenter network performance,” Global Communications
Conference, 2016.

[21] M. Filer, J. Gaudette, M. Ghobadi, R. Mahajan, T. Issenhuth, B. Klink-
ers, and J. Cox, “Elastic Optical Networking in the Microsoft Cloud,”
Journal of Optical Communications and Networking, vol. 8, no. 7, p.
A45, 2016.

[22] A. Prabhakaran and J. Lakshmi, “Cost-benefit Analysis of Public Clouds
for offloading in-house HPC Jobs,” Int. Conf. on Cloud Computing, pp.
57–64, 2018.

[23] C. Kotas, T. Naughton, and N. Imam, “A comparison of Amazon Web
Services and Microsoft Azure cloud platforms for high performance
computing,” Int. Conf. on Consumer Electronics, ICCE 2018, vol. 2018-
Janua, pp. 1–4, 2018.

[24] R. Aljamal, A. El-Mousa, and F. Jubair, “A comparative review of high-
performance computing major cloud service providers,” Int. Confe. on
Information and Communication Systems, vol. 2018-Janua, pp. 181–186,
2018.

111

