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Abstract: Elasticity is one of the most important features of cloud computing, referring to the 
ability to add or remove resources according to the needs of the application or service. Particularly 
for High Performance Computing (HPC), elasticity can provide a better use of resources and also a 
reduction in the execution time of applications. Today, we observe the emergence of proactive 
initiatives to handle the elasticity and HPC duet, but they present at least one problem related to the 
need of a previous user experience, large processing time or completion of parameters. Concerning 
the aforesaid context, this paper presents ProElastic – a lightweight model that uses proactive 
elasticity to drive resource reorganisation decisions for HPC applications. Our idea is to explore 
both performance and adaptivity at middleware level in an effortless way at user perspective. The 
results showed performance gains and a competitive cost (application time  consumed resources). 
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1 Introduction 

Currently, there are many “Grand Challenge” problems that 
require fast responses, such as the weather forecast simulation 
that processes a large number of data to predict the climate 
situation for the next day. Running large and accurate 
simulations commonly require a large number of computing 
resources, demanding the use of supercomputers, computer 
clusters or grids (Weidner et al., 2016). Thus, scientific 
computing has historically been dependent on the advances of 
High Performance Computing (HPC) and parallel processing. 
In general, supercomputers, clusters and grids have a fixed 
number of resources that must be maintained in terms of 
infrastructure configuration, scheduling (where tools such as 
PBS1, OAR2, OGS3 are usually employed for resource 
reservation and job scheduling) and energy consumption 
(Weidner et al., 2016; Lynar et al., 2011; Lynar et al., 2013; 
Lorido-Botrán et al., 2012; Harvey et al., 2016). In addition, 
optimising the number of processes to execute a HPC 
application can be a hard procedure: (i) both short and large 
values will not explore the distributed system in an efficient 
way; (ii) a fixed value cannot fit irregular applications, where 
the workload varies along the execution and/or it is not 
predictable in advance. 

In addition to the aforementioned computing infrastructure 
sources, cloud computing has proved itself as a new way to 
acquire computing resources on demand (Lorido-Botrán et al., 
2012; Beernaert et al., 2012; Gong et al., 2010). An important 
characteristic, not available on traditional architectures (e.g., 
clusters and grids) emerged on cloud computing: elasticity 
(Chilipirea et al., 2016; Netto et al., 2014; da Rosa Righi et al., 
2015). Elasticity is defined as the ability of a system to 
dynamically add or remove computational resources used by 
either an application or user to match the current demand as 
closely as possible. This facility is gaining attention of the HPC 
community thanks to the benefits it can provide, that include 
improvements in performance, cost (normally obtained by 
multiplying application time by the number of resources) 
reduction and better resources utilisation. In theory, now the 
programmer does not need to take care of the number of 
processes and resources for the target application, since both 
will be adapted at runtime. However, as will be discussed later, 
this scenario is not trivial and depends on a series of factors 
including user experience and application and elasticity 
modelling (da Rosa Righi et al., 2015; Coutinho et al., 2016). 

Today, most of the elasticity control strategies can be 
classified as being reactive or proactive (also named by some 
authors as predictive) (Galante et al., 2016) (see Figure 1). 
Reactive approaches are based on both static thresholds and  
if-condition-then rules to manage elasticity (Beernaert  
 

et al., 2012; da Rosa Righi et al., 2015). Although simple and 
intuitive, the task of completing these parameters is not trivial 
sometimes requiring deep knowledge about the behaviour of 
the system over time. This makes the accuracy of the policy 
subjective and prone to uncertainty: the same set of thresholds 
that fits fine a specific infrastructure/ application possibly 
causes undesired emergent behaviours, such as instability and 
resource thrashing, on other settings. In addition, the problem 
of using fixed thresholds is related to the lack of reactivity. 
There are situations in which the cloud controller could 
anticipate the (de)allocation of resources, but the resource 
configuration remains the same due to bad choices on setting 
the lower and upper load thresholds (Chilipirea et al., 2016; 
Coutinho et al., 2016; Galante et al., 2016). 

Figure 1 Elasticity approaches: (a) reactive; (b) proactive 

 

On the other hand, a proactive approach employs prediction 
techniques to anticipate the behaviour of the system (its 
load) and thereby decide the reconfiguration actions (Gong 
et al., 2010; Stelmar Netto et al., 2014; Rosa et al., 2014). 
To accomplish this approach, it is common to use machine 
learning algorithms including Neural Network, Linear 
Regression, Support Vector Machine, Reinforcement Learning 
and Pattern Matching techniques (Galante et al., 2016). 
Although not needing thresholds, this approach is normally 
based on a robust mathematical modelling, being classified 
adversely as time-consuming for sensitive performance-driven 
applications (Palacin et al., 2016). There is also the need of 
training the predictive technique at design-time and previous 
execution of the application to optimise the selection of 
parameters (Galante et al., 2016; Rosa et al., 2014). Finally, 
Netto et al. (2014) affirm that proactive elasticity strategies 
focus only on method accuracy and ignore cloud technical 
limitations such as the time of a scaling up operation, besides 
being very much dependent on workload characteristics. 

In our understanding, at user side, proactive elasticity is 
better because it does not need to complete thresholds or 
rules as the reactive approach does. However, the state-of- 
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the-art in proactive elasticity concerns at least one problem 
related to prior user experience on using elasticity, changes 
in the application code, time-consuming approach, stop-
reconfigure-and-go and need of a previous execution to tune 
parameters or prediction models (Gong et al., 2010; Netto  
et al., 2014; Rosa et al., 2014; Perez-Palacin et al., 2016; Roy  
et al. 2011). Considering this background, we propose 
ProElastic – a lightweight proactive elasticity model that 
provides resource reorganisation for iterative HPC applications. 
The lightweight characteristic is explained in two ways: first, 
we are using ARIMA-based time series to predict the 
application behaviour by monitoring CPU load of virtual 
resources, which computes fast and does not need any 
previous execution of the application (Kalpakis et al., 2001; 
El Hag and Sharif, 2007; Masood and Schmidt, 2015); 
second, the design of loosely-coupled architecture allows  
the execution of scaling out operations in parallel with the  
HPC application, so not blocking the application when 
reconfigurations are in course. In addition, ProElastic acts at 
the PaaS (Platform as a Service) level of a cloud, not imposing 
any change in the application code to take profit from resource 

reorganisation. Effortlessly, the programmer only compiles the 
application with ProElastic middleware, which transforms a 
non-elastic application in an elastic one. 

Our final goal is not only to get a better execution time, 
but also an equal or better cost (consumed resources  
performance) when comparing ProElastic against non-elastic 
and reactive elasticity managers. In Figure 1(b), we illustrate 
the ProElastic’s idea on adding new resources earlier, so 
reducing the application time and not executing in over- or 
under-loaded situations. Based on the proposed model, we 
developed and evaluated a prototype that executes a master-
slave iterative application over a private cloud built over 
OpenNebula. This evaluation also considered four pertinent 
input workloads to analyse the aforementioned metrics under 
different load patterns. Our evaluations followed the principles 
defended by Isalm et al. (2012), who argued that the use of 
synthetic workloads is considered as a representative form to 
evaluate elasticity in computational clouds. The results were 
promising, emphasising the accuracy of the predictions which 
were reflected in the values of application time and cost in 
favour of ProElastic. The main scientific contributions of this 
paper are the following: 

 The ProElastic framework, which not only transforms a 
non-elastic application in an elastic one but also presents  
a communication architecture between applications 
processes and the elasticity manager.  

 We modelled a framework to enable a novel feature 
denoted asynchronous elasticity, where VM (Virtual 
Machine) transferring or consolidation happens in parallel 
with application execution.  

The remainder of this article will first introduce related 
work in Section 2. Section 3 describes ProElastic, its 
architecture and algorithms to control elasticity proactively. 
A ProElastic prototype is presented in Section 4. Evaluation 
methodology and a discussion of the results are presented  
 

in Sections 5 and 6, respectively. Finally, Section 7 emphasises 
the scientific contribution of the work and notes several 
challenges that we can address in the future.  

2 Related work 

This section describes some approaches to manage elasticity 
in cloud. They were divided into two groups: reactive 
managers in Subsection 2.1 and proactive managers in 
Subsection 2.2. Lastly, the initiatives were compared and 
analysed in order to detach the current gaps in the cloud 
elasticity research area. 

2.1 Reactive managers 

Reactive managers are those based only on thresholds to 
take elasticity decisions; more precisely, resource 
reconfiguration takes place when the lower or the upper 
threshold is violated. The advantage of this model is its 
simplicity on both decision making and information 
collection, but new resources will not be available when 
they are really needed because scaling out operations are 
normally time-consuming. Reactive elasticity is mainly 
explored on transactional and Web applications that execute 
on public clouds like Amazon EC2 and Windows Azure 
(Albonico et al., 2016). In the HPC scope, we highlight two 
reactive elasticity initiatives: AutoElastic (da Rosa Righi  
et al., 2015) and Elastack (Beernaert et al., 2012). 
AutoElastic acts at the PaaS level of cloud, managing 
elasticity for master-slave applications where the users do 
not need to change any line in their applications to take 
profit from runtime resource reconfiguration. The user must 
define an SLA (Service Level Agreement) which contains 
the minimum and the maximum number of VMs that could 
be allocated to run the application. AutoElastic uses reactive 
and horizontal elasticity, so an action is taken when a 
threshold is reached to add or remove virtual machines. 

Elastack (Beernaert et al., 2012) has an elasticity manager 
tied at IaaS (Infrastructure as a Service) level of the OpenStack 
middleware. This manager aims to enable adaptability and 
system monitoring, so automatically managing the resources  
of the cloud. Elastack architecture is divided into three 
components: Daemon Monitor, Controller Daemon and 
Serpentine Script. The monitor is a background process that 
runs on each compute node, updating the manager with the 
machines information. The controller is responsible for 
adding and removing resources from the cloud according to 
elasticity decisions. Finally, the serpentine script is the 
module that decides when elasticity takes place or not. 

2.2 Proactive managers 

Proactive managers, unlike reactive ones, try to predict the 
cloud behaviour to anticipate elasticity decisions before any 
under or overload situation. When the system identifies a 
future requirement, an elasticity action is immediately taken;  
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so when a resource is required, it is already available to the 
application processes. In general, the managers here are 
divided into two groups, which are composed considering the 
used prediction algorithm: machine learning and statistical 
model (Rosa et al., 2014). Machine learning algorithms need 
more cycles of initialisation before starting the prediction 
procedures than the statistical models (Rosa et al., 2014). 

Rosa et al. (2014) presented an experimental tool to predict 
workloads in clouds. This tool was created to assess the 
demands of server resources, using historical data of the 
application to predict when more resources are needed. To 
predict the workloads, the authors use two different models: 
Support Vector Regression and Naive Bayes. These two 
machine-learning-based algorithms usually need some learning 
cycles to start the prediction activity. This implementation was 
developed using Amazon cloud and its Java API. 

Vadara (Loff and Garcia, 2014) is a framework for 
managing elasticity which is not tied to any cloud provider. 
The approach of elasticity is predictive, where the system 
tries to predict workloads. Data is recorded along the time, 
allowing it to be applied on predictive algorithms. To predict 
the application workload, Vadara uses k-Nearest Neighbours 
(kNN) to combine the generic elasticity strategies. With this 
algorithm, you can select the best technique according to the 
latest workloads. In the tests, the Holt-Winters, ARIMA and 
StructTS methods were used, so that the kNN can choose 
the best for a particular workload. 

The Insights Platform (Moore et al., 2013) is a framework 
which offers a real-time cloud performance monitor that is in 
charge of elasticity decisions. The main idea of the authors is  
to transform a reactive cloud in a proactive cloud. Both 
algorithms, reactive and proactive, are used to enhance 
performance in the cloud, enabling then one controller for each 
mode. The predictive control was created using the Weka 
machine learning library, comprising three prediction models: 
one based on time series and two based on Naive Bayes. 

Barrett et al. (2013) present an elasticity model using the 
Q-learning concept. This model aims to determine the best 
resources for the current workload using Xen Hypervisor 
which is a popular open source virtualisation framework that 
can work on various cloud providers. The proposal has an 
architecture where the user does not have to worry about 
managing the cloud, simply entering an SLA with the 
application requirements. Each agent makes decisions to add, 
remove or keep the VMs allocated to the application. These 
actions are taken according to different variables, such as cost 
of the resource, penalty related to an SLA violation, CPU 
used, memory usage, etc. With this architecture, the system 
decides the best moment of changing a VM capacity using 
the Amazon cost function for each type of virtual machine. 

Nikravesh et al. (2015) investigated the best algorithm 
between Support Vector Machine (SVM) and Neural 
Networks (NN) for prediction of workloads. To accomplish 
this, they developed different elasticity managers considering 
the two aforementioned algorithms, testing them with a 
predefined set of workloads. The authors used a metric named  
 
 

workload performance (user requests per unit of time). The 
final aim was to compare the prediction accuracy of the two 
algorithms for different patterns of workloads. 

Gong et al. (2010) present a cloud resource management 
model that uses statistical models to predict the load and 
take elasticity decisions. The article presents a manager 
called PRESS and compares its performance with others 
algorithms, which were implemented in the Xen platform. The 
authors modelled PRESS with two prediction algorithms. The 
first intends to be applied to cyclical loads using the signal 
processing technique called Fast Fourier Transform. For loads 
of non-cyclical work, it is used Markov chains. This model 
requires some boot cycles to start the prediction machine. 

Roy et al. (2011) describe a resource allocation algorithm 
based on predictive models, trying to predict future workloads 
in order to reduce the application cost. The cost is given by 
some factors such as the SLA violations, rental cost of 
resources and the cost associated with the configuration 
changes. To be able to predict future workloads, the authors 
used the autoregressive moving average (ARMA) approach. In 
addition to the ARMA, the authors used Mean Value Analysis 
to identify the bottlenecks in the application, where one of the 
parameters of this algorithm is the prediction given by ARMA. 
Finally, it is calculated the cost of making changes in the cloud. 
This is necessary because each change in the cloud has a cost 
associated to it, so it is advantageous to know the cost and 
when it is the best time to apply a particular change. 

2.3 Analysis and research opportunities 

Table 1 presents a comparison among the initiatives discussed 
in this section. Considering the last column, we observe  
that there are two main application models in the cloud:  
(i) transactional, which are accessed through the Web and 
execute in a request-reply interaction pattern (such as  
e-commerce) and; (ii) batch, in which a user launches a 
request and expects its results (such as data mining, graphics 
rendering and scientific application demands) (Martineau  
et al., 2016). Table 1 shows that all work that provide 
proactive elasticity cover transactional applications, where 
metrics like cost and system throughput are prioritised. Only 
two works (Beernaert et al., 2012; da Rosa Righi et al., 2015) 
were built to improve batch applications, but they do not 
provide any kind of proactiveness on resource management. 
We also observe that most of those works (Gong et al., 2010; 
Rosa et al., 2014; Roy et al., 2011; Barrett et al., 2013) focus on 
reducing cloud costs. In terms of transactional applications 
submitted to the cloud this is a major concern, since users are 
usually subjected to pay for using the cloud, like Amazon EC2, 
and every hour (the charge unit varies among the providers) of 
allocation is charged. On the other hand, the main objective on 
executing batch applications is performance, because of these 
applications normally represent CPU- and/or IO-intensive 
problems that require distributed resources and long-running 
demands. 
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Table 1 Related work comparison 

Authors  Elasticity Prediction algorithm Focus manager Application Model 

Da Rosa Righi et al. (2015) 
(AutoElastic)  

Reactive – High-performance  Batch, master-slave 
iterative  

Beernaert et al. (2012) 
(Elastack)  

Reactive – Automating elasticity  Batch, no application 
model  

Rosa et al. (2014)  Proactive Machine learning (SVR and 
Naïve Bayes)  

Avoid cloud  
oversizing  

Transactional, web 
requests  

Gong et al. (2010) (PRESS) Proactive Time Series (Fast Fourier 
transform and Markov chain)  

Reduce cost and SLO 
violations  

Transactional, web 
requests  

Loff and Garcia (2014)  Proactive Machine learning (kNN)  Manager uncoupled 
from the provider  

Transactional, web 
requests  

Roy et al. (2011)  Proactive Time Series (ARMA)  Reduce cost  Transactional, web 
requests  

Moore et al. (2013) (Platform 
Insights)  

Proactive Machine learning (Time 
series and Naïve Bayes)  

Transform reactive 
cloud in proactive  

Transactional, web 
requests  

Barrett et al. (2013)  Proactive Machine learning  
(Q-Learning)  

Optimise cloud 
resources  

Transactional, web 
requests  

Nikravesh et al. (2015)  Proactive Machine learning(SVM e 
NN)  

Predict workload  Transactional, web 
requests  

Comparing the proactive elasticity managers, we observe 
that machine learning techniques are used in most of the 
initiatives (Rosa et al., 2014; Loff and Garcia, 2014; Moore 
et al., 2013; Barrett et al., 2013; Nikravesh et al., 2015). 
Given that these managers are in charge of supporting 
transactional applications, the use of machine learning 
seems the most appropriate method here because most of 
the prediction problems is to identify request patterns to 
web servers. Chang (2016) affirms that sometimes, or yet in 
most of the times, machine learning will fail, thus it requires 
some understanding of the problem beforehand in order to 
apply the right parameters. Machine learning-based 
proactiveness requires a startup period greater than the 
statistical models, which is not a critical problem for web 
applications, but can become an issue for batch demands 
(Chang, 2016). In addition, machine learning techniques are 
normally heavier in terms of CPU cycles than the statistical 
model, so it is common to employ clusters and/or GPU 
boards to execute them efficiently. 

AutoElastic (da Rosa Righi, 2015) and Elastack (Beernaert 
et al., 2012) initiatives aim to increase performance for batch 
applications, without any feature related to proactivity, but 
using thresholds to accomplish elasticity. Other proposals 
(Gong et al., 2010; Rosa et al., 2014; Roy et al., 2011; Loff 
and Garcia, 2014; Moore, 2013; Barrett et al., 2013; 
Nikravesh et al., 2015) operate proactively and seek to 
improve application performance, but are employed on 
transactional applications. This kind of demand only 
presents a request-reply interaction, where a manager: (i) 
receives input requests; (ii) manages load balancing and 
elasticity and; (iii) dispatches requests and receives replies 
to/from processing replicas. The same does not occur on 
batch applications, where data and control dependencies and 
inter-process communication (i.e., communication among  
 

the replicas) can take place. Finally, we identified a gap on 
developing an elasticity manager that combines: (i) lightweight 
proactive elasticity; (ii) focus on HPC applications;  
(iii) performance (both in terms of application time and 
prediction calculus) and; (iv) the interference of the 
user/programmer must be as little as possible.  

3 ProElastic proposal 

This section presents the ProElastic model, describing firstly 
its general ideas and, secondly, its architecture and elasticity 
model. 

3.1 ProElastic principles 

ProElastic is a proactive elasticity model that aims to 
improve performance, but not neglecting the cost (here 
denoted as performance  used resources), for iterative 
master-slave applications that run in the cloud. Our idea is 
to provide proactive elasticity in a transparent and effortless 
way at user viewpoint, who does not need to write rules and 
actions for resource reconfiguration as required in reactive 
approaches. In addition, users must not need to change their 
parallel application, so not inserting any elasticity calls from a 
particular library or modifying the application to add/remove 
resources by themselves. Acting at the PaaS level of a cloud, 
ProElastic firstly transforms a non-elastic application in an 
elastic one and secondly, it manages resource (and also 
application processes, consequently) reorganisation through 
automatic VM allocation and consolidation procedures. The 
proposal must be aware of the VM instantiation overhead to 
provide seamless elasticity, i.e., in a non-prohibitive way for 
HPC applications. 
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Figure 2  General ideas on using elasticity: (a) standard approach adopted by Amazon AWS and Windows Azure, in which the user must 
pre-configure a set of elasticity rules and actions; (b) Prolastic idea, contemplating a manager that coordinates the elasticity 
actions and configurations on behalf of the user 

 
 (a) (b) 

 
Figure 2(a) illustrates the traditional approaches of providing 
cloud elasticity to HPC applications, while part (b) highlights 
ProElastic’s idea. We are offering a middleware in which user 
must compile his/her application with, and also a manager 
that controls resource reorganisation. The proactive nature of 
the model refers to not only the interactionless behaviour at 
user viewpoint, but also the capacity to anticipate elasticity 
actions based on historical data. To accomplish this, we are 
using the statistical model to provide predictions; more 
precisely, ARIMA-based (Kalpakis et al., 2001; El Hag and 
Sharif, 2007; Masood and Schimidt, 2015) time-series were 
used to compute the load metric for the application. Other 
prediction algorithms like ARMA and Moving Average 
(MA) were passed over because they present at least one of 
the problems: demonstrate a not accurate prediction; time-
consuming; many boot cycles to start predictions. Taking into 
account our focus on CPU-bound HPC applications, 
ProElastic works with the CPU metric of the virtual machines 
in the time series calculus. 

We are focusing on master-slave iterative applications, 
i.e., applications that are characterised as a collection of 
loops. Although trivial, this style is used in several areas, such 
as genetic algorithms, Monte Carlo techniques, geometric 
transformations in computer graphics, SETI@Home-like 
applications, cryptography algorithms and applications  
that follow the Embarrassingly Parallel computing model 
(Martineau et al., 2016; Raveendran et al., 2011). Particularly, 
the iterative nature is pertinent to our purposes for the 
following rationale: (i) unlike using application time, the 
use of the number of loop refers to a significative meaning 
in the prediction calculus; (ii) either the beginning or the 
end of loop can be a pertinent part to insert elasticity code; 
(iii) in the beginning of a loop, we have a consistent global 
state of the distributed system in which there are not in-
transit communications. 

3.2 Architecture 

Figure 3 shows the ProElastic architecture, highlighting 
both the elasticity manager and cloud components. 
ProElastic employs horizontal elasticity in which the work 
granularity is a node with c virtual machines, where c 
denotes the number of processing cores. Each virtual 
machine refers to a slave process that runs solely to exploit 
the full power of a single core. We are neglecting the use of 
vertical elasticity (i.e., VM resizing; Galante et al., 2016) 
because this approach is limited to the processing power of 
a single node. In addition, VM resizing normally implies in the 
stop-reconfigure-and-go approach, which is prohibitive for 
time sensitive applications like the HPC ones. Thus, horizontal 
approach is useful for enabling resource deallocation and for 
enlarging the infrastructure beyond the limits of a single 
resource. 

The most important module of the ProElastic 
architecture is the Prediction Engine, which is in charge of 
predicting load values based on the CPU metric. The 
manager uses the API offered by the cloud provider to both 
collect monitoring data and to trigger elasticity actions. The 
Evaluator module receives the predicted load from the 
Prediction Engine and uses this data on elasticity decision 
making. If a reconfiguration is required, the manager sends 
a notification to the master process. The communication 
between the manager and the master process is performed 
using a shared data area, which can be enabled with 
Network File System (NFS), Advanced Message Queuing 
Protocol (AMQP) or JavaSpaces. The use of a shared area 
for data interaction among VM instances is a common 
approach in private clouds (Vozmediano et al., 2012; Cai  
et al., 2012). ProElastic manager uses SSH to login in the 
cloud front-end and to read/write from/to the shared area 
afterwards. 
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Figure 3 ProElastic architecture. Here, c  denotes the number of cores inside a node, m  is the number of nodes, and n  refers to the 
number of virtual machines (VMs) running slave processes, which is obtained by c m  

 

Concerning the focus on providing a lightweight proactive 
approach, ProElastic uses ARIMA-based time series which is 
quickly computed only using a single node; in our case, in  
the manager. In addition, the lightweight term is also related to 
the design of the proposed model. Instead of offering an 
application-sided elasticity, the use of a manager brings the 
non-blocking benefit at the application perspective when 
resource reconfigurations take place. We named this feature as 
asynchronous elasticity, in which the application is notified as 
soon as a new computing VM instance (scale out) is available 
in the system without impairing its normal execution flow. 
However, this non-blocking operation implies in the following 
question: How can we notify the application about the resource 
reconfiguration? We used the shared data area for this purpose. 
At each loop iteration, the master verifies in the shared data 
area whether the elasticity manager signalises the existence of 
resources to add or drop to/from the communication topology. 
In detail, ProElastic enables three notifications: 

 The manager writes to the shared area, whereas 
application processes read from it:  

– Notification 1: there is a new compute node with c 
VMs, each one with a new application process that 
has an IP and a unique identification.  

– Notification 2: request permission to consolidate a 
compute node and its VMs.  

 A single application process writes to the shared area, 
whereas the manager reads from it:  

– Notification 3: this gives permission to consolidate 
the previously requested node.  

Based on Notification 1, the current processes may start 
working with the new set of resources (a single node with c 
VMs, each one with a new process). Figure 4 illustrates the 
functioning of the ProElastic Manager when creating a new 
slave, so launching Notification1 afterwards. Notification 2 is 
relevant for the following reasons: (i) not stopping a process 
executing while either communication or computation 
procedures take place; (ii) ensuring that application will not be 
aborted with the sudden interruption of one or more processes. 
In particular, the second reason is important for MPI (Message 
Passing Interface) applications that run over TCP/IP networks, 
since they commonly crash with a premature termination of 
any process (Galante et al. 2016). Notification 3 is normally 
taken by a master process, which ensures that the application 
has a consistent global state where processes may be 
disconnected properly. Afterwards, the remaining processes do 
not exchange any message to the given node. 

Figure 4 Functioning of the master, the new slave and the ProElastic Manager to enable the asynchronous elasticity 
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3.3 Elasticity management and prediction model 

ProElastic addresses scaling in and out operations in such a 
way that elasticity actions are anticipated, so resources are 
completely delivered earlier than reaching either an under- 
or over-provisioned situation. Since ProElastic performs 
periodical monitoring, elasticity can occur only in discrete 
observation points where cloud data collection and elasticity 
decision making are activated. Evaluator and Prediction 
Engine modules are in charge of managing elasticity 
actions. Their interactions can be observed in the flowchart 
of Figure 5, which depicts the ProElastic’s periodical 
monitoring loop. Below we detail the responsibility of each 
module: 

 Evaluator: This modules act in three moments. First, 
when a monitoring observation takes place, Data 
Collector module captures all CPU loads from all 
running VMs. Evaluator takes this data to compute 

_CPU load  as the arithmetic average of the load values. 

Second, _CPU load  is sent to the Prediction Engine 

module which performs a series of calculus, so returning 
_Forecast load  back to the Evaluator afterwards. Third, 

to decide about elasticity actions, the Evaluator must 
decide if _Forecast load  indicates an overloaded or 

underloaded situation. Considering related work (Netto 
et al., 2014; da Rosa Righi et al., 2015; Galante et al., 
2016), we are using lower and upper load limits for this; 
particularly, the values of 20% and 80% of CPU load 
were adopted. If one of these limits is exceeded, a 
resource reconfiguration takes place to address such a 
situation. Our work grain is a single compute node. A 
scaling out operation involves the addition of a node and 
c VMs (where c denotes the number of processing cores 
of the node), while a scaling in operation turns off a 
particular node and all VMs running on it. 

 Prediction Engine: After receiving _CPU load  relative 

to the tho  monitoring observation, Prediction Engine 
stores this value locally and performs two operations: 
(i) development of a regression equation that better fits 
all stored _CPU load  values from now up the last VM 

delivery or up to the beginning of the application; (ii) 
using the aforesaid equation, the idea is to determine 
the system load in the future. To accomplish (i), we 
configure ARIMA to act as the Holt-Winters method 
(El Hag and Sharif, 2007), so considering the Triple 
Exponential Smoothing approach to propose the 
equation. This method assigns exponentially decreasing 
weights as the observation get older. Taking into 
account this equation in the ( )f x  style, in (ii) we must 

decide x as the moment that we would like to predict 
the CPU load. In other words, considering that we 
know the number of o, we must decide ahead  since o+ 
ahead will serve as x in the equation. To compute 
ahead, we are using equation (1). Equation (1) 
considers the maximum value among all times 
regarding already performed scaling out operations, 

which is feasible thanks to always using the same VM 
template that represents a slave process. Finally, the 
forecasted value is assigned to _Forecast load , which 

is sent to the Evaluator module. 

( ( _ _ ))
=

_ _

Abs Max Scaling out time
ahead

monitoring observation period
 (1) 

Figure 5  Flowchart of the ProElastic Manager periodical 
monitoring loop. First, the Data Collector module collects 
CPU load values to compute the total load. It needs a 
collection of values to start the Prediction Engine. Second, 
the Prediction Engine uses this collection to create an 
equation, so using it to verify that a threshold will be 
violated when crossing n loops ahead in the execution. 
Finally, elasticity actions take place if the Evaluator 
detects the need to add or remove resources 
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The variable ahead points out as soon as an elasticity action 
must be done. Equation (1) shows how we compute this 
value, preventing us from two pitfalls: (i) if ahead  is 
considered as very large, the prediction method can miss the 
next short-term steps of the application behaviour so 
incurring in an eventual false-positive or false-negative 
elasticity situation; (ii) if ahead  is considered as too short, 
an elasticity action can deliver the resources after its real need 
by the application, so incurring in an overloaded situation and 
performance loss. In equation (1), Scaling_out_time considers 
the VM instantiation time which involves the transferring of a 
VM template that will run a slave process and the complete 
bootstrap of the operating system. Figure 6 illustrates an 
example in which an elasticity action is taken because  
of ProElastic concluded that ahead monitoring observations  
in advance the system would execute in an overloaded  
state. 

Figure 6 Example of elasticity prediction. In the green ball, 
ProElastic predicts a future value of CPU, so a new 
VM is instantiated because the value of the forecast 
CPU exceeds the upper threshold. This VM is ready for 
use after a few cycles then reducing the CPU load 
thanks to a better load balance among a greater number 
of resources 

 

ARIMA was chosen because it is a widely used model in 
several areas that need any kind of time series-based 
prediction (El Hag and Sharif, 2007; Masood and Schmidt, 
2015). The algorithm only begins to predict after a few boot 
cycles (fewer cycles than those needed in the machine 
learning model) (Kalpakis et al., 2001). Based on (Kalpakis 
et al., 2001), we are using 5 for this parameter, so  
5   _ _monitoring observation period  denotes the time in 

the beginning of the execution where none resource 
reconfiguration takes place. In addition, this time is also 
considered when delivering a new VM, since historical data 
regarding _CPU load  values is reset so new values must be 

collected to restart the prediction engine. In the rest of the 
article, we also reference this moment as warm-up prediction 
period. 

3.4 Application model 

ProElastic acts at the middleware level, not imposing any 
modification in application code. However, the user must  
 
 

write his or her application following a set of rules, as we 
will discuss in this section. ProElastic explores data parallelism 
on iterative message-passing applications. Currently, it  
works with master-slave applications, which is a parallel 
programming model extensively used in the several contexts. 
However, we emphasise that the framework allows the existing 
processes of the HPC application to know the identifier  
of the new instantiated processes. This enables an all-to-all 
communication topology and the support, for example, of bulk 
synchronous parallel and pipeline programming models 
(Zomaya et al., 1996). The ProElastic parallel applications 
follow the multiple program multiple data (MPMD) 
principle (Zomaya et al., 1996), in which master and slave 
processes have different executable codes; each is mapped 
to a different VM template. The intent is to offer application 
decoupling for processes with different purposes, enabling 
readability and facilitating the implementation of elasticity. 

Figures 7(a) and (b) present pseudocode of a ProElastic-
supported iterative application. The master code executes a 
series of tasks, capturing each one sequentially and 
parallelising one-by-one to be processed by slave processes. 
Figure 8 illustrates the synchronous functioning of the iterative 
application with a malleable number of slave processes. 
ProElastic works with the following MPI 2.0-like 
communications directives, as highlighted in Figure 7: (i) 
publication of a connection port; (ii) looking for a server, 
adopting a connection port as a starting point; (iii) connection 
request; (iv) connection accept; (v) disconnection request; and 
(vi) pairwise send/receive data. Different from the approach 
in which the master process launches the slaves using a 
spawn-like directive, the proposed model operates according 
to another approach of MPI 2.0 for dynamic process 
management: connection-oriented communication using 
point-to-point, as sockets do. The launching of a VM 
automatically occurs in the execution of a slave process, 
which requests a connection with the master afterwards. Here, 
we emphasise that an application with ProElastic does not 
need to follow the MPI 2.0 interface, but the semantic of each 
aforementioned directive. 

The transformation of a non-elastic application into an 
elastic one can be modelled at the PaaS level by one of  
the following three strategies: (i) polymorphism can 
overload a method to provide elasticity for object-oriented 
implementations; (ii) a source-to-source translator can be 
used to insert code between lines 2 and 3; (iii) a wrapper for 
the function in line 3 of Figure 7(a) can be developed for 
procedural languages. Independent of the strategy, the code 
required for elasticity is simple, as shown in Figure 7(c). 
First, we must verify whether there is a new action from the 
ProElastic manager in the shared data area. If Notification 1 
has been activated, the master process reads the information 
concerning the new slaves and knows that it must expect 
new connections from them. In the case of Notification 2, 
the master removes from its group the processes that belong 
to a specific node. After doing that, it triggers Notification 3. 
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Figure 7 (a) and (b): multiple program multiple data-like parallel application model supported by ProElastic; and (c) elasticity code to be 
inserted transparently by ProElastic in the code of the Master when considering the user viewpoint 

  

Figure 8 Application execution considering a malleable number of slave processes 

 

Although the design of ProElastic considers master-slave 
applications, the iterative modelling and the use of MPI 2.0-like 
directives facilitates both the addition and removal of 
processes, and the establishment of completely new and 
arbitrary topologies. At the implementation level, it is possible 
to optimise connection and disconnection procedures if a 
particular slave process remains active in the process list. This 
improvement can avoid too many TCP connections that require 
a three-way handshake protocol, which might be expensive for 
some applications.  

4 Prototype implementation 

This section describes the implementation decisions on 
writing a ProElastic prototype. We are using the OpenNebula 

(Moreno-Vozmediano et al., 2012) private cloud package to 
assembly our cloud environment. In addition, its Java API 
was also used to implement VM data monitoring and 
scaling in and out operations. The cloud configuration 
consists of eleven computers: ten of them are used as 
computing nodes and one acts as cloud front-end. All 
computers have the same configuration, which includes a 
Core 2 Duo E7500 2.9GHz processor and 4GB of RAM. 
The network interface cards are Gigabit Ethernet, however 
the switch is Fast Ethernet. 

To implement the prediction algorithm, ARIMA, we 
used the JRI library that communicates with the R language. 
We opted to work with R because it already has a native 
library to work with ARIMA. The requirement here is that 
we need to install R on the same machine that ProElastic 
will operates. Tests conducted to evaluate the performance 
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of the Java with R integration demonstrated a very low 
overhead: the prediction engine takes about 500 milliseconds to 
return a response of a future metric when 20 values are 
considered in the time series. In the tests, each observation lasts 
approximately 15 seconds, so the aforesaid prediction time is 
not a performance problem. 

The ARIMA has several configurations, based on three 
variables: p is the number of autoregressive terms, d is the 
number of differences and q is the number of terms in the 
moving average. The configuration used in this work 
considered the ARIMA with the following values: p = 0,  
d = 2 and q = 1. This configuration performs a triple 
exponential smoothing. Several ProElastic tests with different 
configuration possibilities for ARIMA were conducted and the 
aforementioned configuration was chosen since achieved the 
best performance.  

5 Evaluation methodology 

We developed a master-slave application that computes the 
numerical integration of a series of equations. The application 
follows the Newton-Cotes postulate that considers the area 
inside a closed interval by computing the area of several 
trapezoids (da Rosa Righi et al., 2015). The larger the number 
of subintervals, i.e. the number of trapezoids, the larger the 
CPU cycles to compute the application. The master reads a file 
containing a series of equations, so each loop is in charge of 
computing a single equation by passing a set of subintervals 
and the input equation for the existing slave processes. Aiming 
at observing ProElastic under different load situations, we 
designed four workloads: constant, ascending, descending and 
wave. Table 2 presents how we are computing them. We 
consider load(x) as the number of sub-intervals that will be 
calculated at each application iteration. For example, the 
Constant load maintains the number of processed subintervals 
as being the same for all equations, while in the descending 
load the application starts with a large number of subintervals, 
which becomes decrescent along the time. 

Using the aforesaid application and the proposed 
workloads, we also modelled three scenarios to evaluate 
ProElastic: 

 

 Scenario 1 (Non-Elastic) considers the execution of the 
master-slave application in a non-elastic fashion, i.e., 
with a fixed number of processes. 

 Scenario 2 (AutoElastic) was developed to test the 
execution of the application when considering a reactive-
based elasticity manager named AutoElastic. As 
ProElastic, AutoElastic also considers the CPU load as 
main metric on resource reorganisation decision making. 
Based on (da Rosa Righi et al., 2015), AutoElastic was 
configured with the values of 20% and 80% for the lower 
and upper thresholds, respectively. 

 Scenario 3 (ProElastic) presents the performance of  
the master-slave application which was compiled and 
executed with ProElastic. 

Besides the performance perspective that represents final 
application time, we also compute the energy and the cost 
metrics. Particularly, energy consumption in computing is an 
important issue due to the increasing energy cost (Lynar et al., 
2011; Lynar et al., 2013). Thus, we investigate the energy 
consumption by measuring resource allocation. Here, energy 
refers to the resource consumption which is rigid in Scenario 1 
and malleable in Scenarios 2 and 3. To estimate the energy of 
the application, it is necessary to know the time that each 
deployment of virtual machines took place (see equation 2). In 
this equation, n  means the maximum number of allocated 
VMs and ( )T i  is the time spent when running a configuration 
with i  VMs. For example, consider the situation: 20s with 
2VMs, 120s with 4VMs, 100s with 6VMs and 80s with 4VMs; 
here we have = 20 2energy    (120 4 80 4) 100 6       

= 1440. The cost, in its turn, is used to analyse how effective is 
the execution, with or without elasticity. Based on the standard 
notion of cost in the parallel computing area, which considers 
time and processors, here we use time and the previously 
computed energy metric (see equation 3). In this equation, 
Timeapp refers to the total time to run the application. Finally, 
since ProElastic is a proactive manager we are also analysing 
the accuracy of the prediction algorithm, comparing what was 
predicted against the actual CPU values. 

=1

= ( ( ))
n

i

Energy i T i  (2) 

= appCost Energy Time  (3) 

Table 2 Functions that define the input workloads 

Load Load Function 
Parameters 

v w t z 

Constant load ( ) 2x w   – 1,000,000 – – 

Ascending load ( )x x t z    – – 0.2 500 

Descending load ( ) ( )x w x t z     – 1,000,000 0.2 500 

Wave load ( ) ( )x v z sen t z v z w        1 500 0.00125 500,000 
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6 Results 

This section describes the results, which were organised in 
two subsections: (i) Subsection 6.1 presents the values of 
time, energy and cost for the three considered scenarios;  
(ii) Subsection 6.2 highlights some ProElastic executions, 
showing resource allocation and both predicted and actual 
CPU loads along the time. 

6.1 Analysing time, energy and cost metrics 

Table 3 shows the application time in seconds when 
considering the four workloads and three scenarios. The 
non-elastic execution was tested with 1, 2, 3 and 4 nodes. 
As detailed in Section 4, each node executes 2 VMs, each 
VM with a single slave process. We also present different 
initial configurations for AutoElastic and ProElastic. Table 3 
shows that ProElastic is faster than AutoElastic, being also 
the best option in the most of the cases when comparing 
scenarios Non-Elastic and ProElastic. We observe that the 
initial configuration is crucial for performance purposes. For 
example, the execution with 4 fixed nodes presents a better 
performance when compared with elastic executions that 
started with 1 or 2 nodes. In this case, even enlarging the 
number of resources in AutoElastic and ProElastic, the 
application is not long-running enough to outperform the 
execution that started from a larger number of compute 
nodes. However, the larger the resource allocation along the 
time, the larger the energy metric as presented in Table 4. It 
is clear that time and energy are inversely proportional 
metrics. This explains the higher indexes for ProElastic in 
Table 4. 

Table 3 Application time in seconds 

  Workload 
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Non-Elastic  

1 4043 4068 4026 4079 

2 2482 2574 2511 2531 

3 1736 1842 1765 1907 

4 1610 1701 1706 1651 

AutoElastic 

1 2118 2340 2179 2044 

2 2356 1843 2122 1732 

3 1756 1768 2092 1616 

ProElastic 

1 1821 2034 1673 1880 

2 1627 1752 1527 1675 

3 1550 1660 1524 1516 

 
 
 
 

Table 4 Energy consumption in accordance with equation (2) 

 Workload 
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Non-Elastic

1 8086 8135 8052 8158 

2 9928 10,297 10045 10125 

3 10417 11051 10590 11444 

4 12876 13610 13649 13205 

AutoElastic

1 10578 12185 10282 11464 

2 9424 12635 10635 12812 

3 10537 12540 9880 12486 

ProElastic 

1 12154 14002 12645 12904 

2 12136 13661 12534 14382 

3 11841 13854 12530 14377 

Both energy and time values were used to compute the results 
presented in Table 5. The results of cost emphasise the benefits 
of using cloud elasticity, where elastic execution obtained 
either a better or a competitive cost when compared with non-
elastic executions. The best results of ProElastic appear when 
using 1 or 2 nodes: these situations present the advantages of 
the resource management on allocating and deallocating 
resources, which increases the application time but not causing 
a prohibitive use of energy for that. In addition, Table 5 
presents the advantages of using ProElastic when confronted to 
AutoElastic: the former presents better execution time in all  
of the 12 cases (see Table 3) and a better cost in 7 of them  
(see Table 5). 

Table 5 Cost in accordance with equation (3) 

  Workload 
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Non-Elastic 

1 32,691,698 33,093,180 32,417,352 33,280,561

2 24,641,296 26,504,478 25,222,995 25,626,375

3 18,083,912 20,355,942 18,691,350 21,823,708

4 20,730,360 23,150,610 23,285,194 21,801,455

AutoElastic 

1 22,404,204 28,512,900 22,404,478 23,432,416

2 22,202,944 23,286,305 22,567,470 22,190,384

3 18,502,972 22,170,720 20,668,960 20,177,376

ProElastic 

1 22,132,434 28,480,068 21,155,085 24,259,520

2 19,745,272 23,934,072 19,139,418 24,089,850

3 18,353,550 22,997,640 19,095,720 21,795,532
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6.2 Analysing the behaviour of the ProElastic execution 

The idea of this subsection is to present graphs regarding the 
accuracy of the prediction and how resource reconfiguration 
happens along the time. Figures 9 , 10 and 11 depict the CPU 
load behaviour for the constant, ascending and descending 
workloads. For each graph in these figures, we present the 
real and the predicted CPU loads, the moments of scaling out 
operations, the moments where a new resource is delivered to 

the application and the warm-up prediction period. Particularly, 
this last information refers to the time that we gather CPU 
values but there are not enough quantitatively to start the 
ARIMA prediction engine. In Figure 9, we observed that the 
predicted values are very close to real ones. Two VMs were 
allocated when passing 75 s of execution, which were delivered 
after crossing 240 s. The same was perceived for 330 s and 
495s. After adding 4 VMs, the application executes in steady 
way with a mean CPU load of 68%. 

Figure 9 Application behaviour of the constant workload with ProElastic 

 

Figure 10  Application behaviour of the ascending workload with ProElastic 
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Figure 11 Application behaviour of the descending workload with ProElastic 

 

Figure 12 Resource allocation versus CPU load when executing the ascending workload. (a), (b) and (c) using ProElastic; (d), (e) and  
(f) using AutoElastic and (g), (h) and (i) using a non-elastic approach. We are starting with 1 node in the first row, 2 nodes in the 
second row and 3 nodes in the third row 

 



90 R. da Rosa Righi et al.   

Figure 13 Resource allocation versus CPU load when executing the wave workload. (a), (b) and (c) using ProElastic; (d), (e) and (f) using 
AutoElastic and (g), (h) and (i) using a non-elastic approach. We are starting with 1 in the first row, 2 nodes in the second row 
and 3 nodes in the third row 

 

Considering the ascending graph in Figure 10, the CPU load 
never reaches the upper threshold, i.e., we do not have 
violations. However, elasticity actions are not conducted by 
the CPU load itself, but by the predicted values; so, we have 
5 moments of VM allocation which explains the obtained 
performance. In other words, the prediction was decisive for 
improving application performance by triggering scaling out 
operations accurately. The weakness point here is the wide 
variation between CPU load and the predicted value, where 
some peaks take place for this last metric. Considering the 
behaviour of the descending workload, Figure 11 also 
presents peaks in the prediction data. But these peaks were 
responsible, first for allocating resources to execute the 
application faster; second to deallocate resources since a 
descending pattern was detected in the time series. 

Figures 12 and 13 illustrate the application behaviour of 
the three scenarios when executing the ascending and wave 
workloads. In parts (d), (e) and (f) of these figures, we can  
 
 

observe that resource allocation only happens when 
exceeding the thresholds and, consequently, the application 
executes in an overloaded state during a particular time up 
to delivering new VMs. Figures 12 and 13 also present three 
important information: (i) resource allocations are faster in 
ProElastic when confronted to AutoElastic, highlighting the 
lack of reactiveness of this last approach; (ii) an application 
compiled with ProElastic executes quicker if compared to 
the other scenarios (in some cases, more than 3 times 
faster); (iii) the allocation of more resources, but not stressing 
them, was responsible for the ProElastic results. Exploring 
information (iii), in terms of performance, it is better to have 2 
nodes, each one with 70% of CPU load, instead of using only 
one node with 90% or more of CPU load. In addition, the 
results in Table 5 show that ProElastic’s elasticity approach is 
not prohibitive; in contrary, we not only efficiently manage the 
number of resources to get performance but also obtained 
competitive or better values of cost. 
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In addition, Figure 12 presents a graph of the ascending 
workload that presents a relationship between CPU load and 
the number of running VMs. In this kind of graphs, it is 
pertinent to observe that exactly in the moment where a new 
resource is delivered, we have a better load balancing which 
involves the division of computing demands among a larger 
number of slave processes. Thus, at this moment, the load 
decreases in response to this resource reorganisation action. 
Immediately after providing a new resource, the load 
abruptly drops, so arising afterwards. In this figure, we 
observe the proactive nature of the ProElastic manager, 
which anticipates scaling out decisions so delivering 
resources always before reaching an index load indicated by 
the upper threshold. 

7 Conclusion 

Demand for HPC continues to grow, driven in large part by 
ever increasing demands for more accurate and faster 
simulations to meet new regulatory requirements, to increase 
safety or to reduce financial risks. Aiming at fitting this 
statement, this article presented a model named ProElastic 
and its functioning in the HPC scope to optimise cloud 
resource allocation in a proactive way. ProElastic acts at 
middleware level targeting iterative message-passing 
applications that can be easily implemented in MPI 2, which 
offers a sockets-based programming style for dynamic 
process creation. The use of time series and ARIMA-based 
prediction, together with an estimation of the scaling out 
operation time and the frequency of periodical monitoring, 
was decisive to accurately anticipate resource reconfiguration 
actions in such a way their delivery happens before the 
moment in which they are really needed by the application. 
The main scientific contribution is the ProElastic framework, 
which not only transforms a non-elastic application in an 
elastic one but also presents a communication architecture 
between application’s processes and the elasticity manager. 
Moreover, considering the time requirements of HPC 
applications, we modelled a framework to enable a novel 
feature denoted asynchronous elasticity, where VM transferring 
or consolidation happens in parallel with application execution. 

ProElastic was evaluated with a prototype that ran a 
numerical integration application when considering three 
metrics (time, energy and cost) and three scenarios (non-
elastic, elastic with a reactive manager named AutoElastic 
and ProElastic). The results emphasised the performance 
gains with ProElastic when confronted to the other 
scenarios. These gains range from 7% to 48% in favor of 
ProElastic when analysing Table 3. Also pertinent, this 
reduction in the application time is accompanied with a non-
prohibitive use of resources, as stated in the cost values 
obtained with ProElastic (see Table 5 for details). 

Although achieving accuracy and performance, future 
research concerns the employment of other prediction 
policies, such as neural networks and SVM. In addition, the  
study of the elasticity grain and the execution of highly  
irregular applications also contemplate future steps. The 

grain, in particular, refers to the number of nodes and VMs 
involved on each elasticity action. Regarding the target 
application, although the numerical integration application 
be useful to evaluate ProElastic ideas, we intend to explore 
elasticity on highly-dynamic applications (Jin et al., 2014). 
Finally, our plans also consider to extend ProElastic to 
cover elasticity on other HPC programming models, such as 
divide-and-conquer, pipeline and bulk-synchronous parallel 
(BSP). 
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