
76 Int. J. Grid and Utility Computing, Vol. 10, No. 1, 2019

Copyright © 2019 Inderscience Enterprises Ltd.

Towards providing middleware-level proactive
resource reorganisation for elastic HPC
applications in the cloud

Rodrigo da Rosa Righi*,
Vinicius Facco Rodrigues,
Igor Fontana de Nardin and
Cristiano André da Costa
Applied Computing Graduate Program,
Unisinos University,
São Leopoldo, Rio Grande do Sul, Brazil
Email: rrrighi@unisinos.br
Email: vfrodrigues@unisinos.br
Email: nardinif@unisinos.br
Email: cac@unisinos.br
*Corresponding author

Marco Antonio Zanata Alves
Federal University of Paraná – UFPR,
Curitiba, Paraná, Brazil
Email: mazalves@inf.ufpr.br

Maurício Aronne Pillon
Santa Catarina State University – UDESC,
Joinville, Santa Catarina, Brazil
Email: mauricio.pillon@udesc.br

Abstract: Elasticity is one of the most important features of cloud computing, referring to the
ability to add or remove resources according to the needs of the application or service. Particularly
for High Performance Computing (HPC), elasticity can provide a better use of resources and also a
reduction in the execution time of applications. Today, we observe the emergence of proactive
initiatives to handle the elasticity and HPC duet, but they present at least one problem related to the
need of a previous user experience, large processing time or completion of parameters. Concerning
the aforesaid context, this paper presents ProElastic – a lightweight model that uses proactive
elasticity to drive resource reorganisation decisions for HPC applications. Our idea is to explore
both performance and adaptivity at middleware level in an effortless way at user perspective. The
results showed performance gains and a competitive cost (application time consumed resources).

Keywords: cloud elasticity; proactive optimisation; performance; resource management; adaptivity.

Reference to this paper should be made as follows: da Rosa Righi, R., Rodrigues, V.F.,
de Nardin, I.F., da Costa, C.A., Alves, M.A.Z. and Pillon, M.A. (2019) ‘Towards providing
middleware-level proactive resource reorganisation for elastic HPC applications in the cloud’,
Int. J. Grid and Utility Computing, Vol. 10, No. 1, pp.76–92.

Biographical notes: Rodrigo da Rosa Righi is Assistant Professor and researcher at Unisinos. He
obtained his PhD degree in Computer Science in 2005.

Vinicius Facco Rodrigues is a PhD student in Applied Computing and researcher at Unisinos
University. His research areas are computer networks and distributed systems.

Igor Fontana de Nardin is graduated in Science Computer by Unisinos University. His research
areas are computer networks and distributed systems.

Cristiano André da Costa is a Full Professor at Unisinos and he obtained his PhD degree in
Computer Science at UFRGS in 2008.

 Towards providing middleware-level proactive resource reorganisation 77

Marco Antonio Zanata Alves is adjunct Professor at UFPR since 2016. He has experience in
computer science, focusing on computer architecture area.

Maurício Aronne Pillon is Professor at UDESC since 2006. He has experience in computer
networks, distributed systems and parallel systems.

1 Introduction

Currently, there are many “Grand Challenge” problems that
require fast responses, such as the weather forecast simulation
that processes a large number of data to predict the climate
situation for the next day. Running large and accurate
simulations commonly require a large number of computing
resources, demanding the use of supercomputers, computer
clusters or grids (Weidner et al., 2016). Thus, scientific
computing has historically been dependent on the advances of
High Performance Computing (HPC) and parallel processing.
In general, supercomputers, clusters and grids have a fixed
number of resources that must be maintained in terms of
infrastructure configuration, scheduling (where tools such as
PBS1, OAR2, OGS3 are usually employed for resource
reservation and job scheduling) and energy consumption
(Weidner et al., 2016; Lynar et al., 2011; Lynar et al., 2013;
Lorido-Botrán et al., 2012; Harvey et al., 2016). In addition,
optimising the number of processes to execute a HPC
application can be a hard procedure: (i) both short and large
values will not explore the distributed system in an efficient
way; (ii) a fixed value cannot fit irregular applications, where
the workload varies along the execution and/or it is not
predictable in advance.

In addition to the aforementioned computing infrastructure
sources, cloud computing has proved itself as a new way to
acquire computing resources on demand (Lorido-Botrán et al.,
2012; Beernaert et al., 2012; Gong et al., 2010). An important
characteristic, not available on traditional architectures (e.g.,
clusters and grids) emerged on cloud computing: elasticity
(Chilipirea et al., 2016; Netto et al., 2014; da Rosa Righi et al.,
2015). Elasticity is defined as the ability of a system to
dynamically add or remove computational resources used by
either an application or user to match the current demand as
closely as possible. This facility is gaining attention of the HPC
community thanks to the benefits it can provide, that include
improvements in performance, cost (normally obtained by
multiplying application time by the number of resources)
reduction and better resources utilisation. In theory, now the
programmer does not need to take care of the number of
processes and resources for the target application, since both
will be adapted at runtime. However, as will be discussed later,
this scenario is not trivial and depends on a series of factors
including user experience and application and elasticity
modelling (da Rosa Righi et al., 2015; Coutinho et al., 2016).

Today, most of the elasticity control strategies can be
classified as being reactive or proactive (also named by some
authors as predictive) (Galante et al., 2016) (see Figure 1).
Reactive approaches are based on both static thresholds and
if-condition-then rules to manage elasticity (Beernaert

et al., 2012; da Rosa Righi et al., 2015). Although simple and
intuitive, the task of completing these parameters is not trivial
sometimes requiring deep knowledge about the behaviour of
the system over time. This makes the accuracy of the policy
subjective and prone to uncertainty: the same set of thresholds
that fits fine a specific infrastructure/ application possibly
causes undesired emergent behaviours, such as instability and
resource thrashing, on other settings. In addition, the problem
of using fixed thresholds is related to the lack of reactivity.
There are situations in which the cloud controller could
anticipate the (de)allocation of resources, but the resource
configuration remains the same due to bad choices on setting
the lower and upper load thresholds (Chilipirea et al., 2016;
Coutinho et al., 2016; Galante et al., 2016).

Figure 1 Elasticity approaches: (a) reactive; (b) proactive

On the other hand, a proactive approach employs prediction
techniques to anticipate the behaviour of the system (its
load) and thereby decide the reconfiguration actions (Gong
et al., 2010; Stelmar Netto et al., 2014; Rosa et al., 2014).
To accomplish this approach, it is common to use machine
learning algorithms including Neural Network, Linear
Regression, Support Vector Machine, Reinforcement Learning
and Pattern Matching techniques (Galante et al., 2016).
Although not needing thresholds, this approach is normally
based on a robust mathematical modelling, being classified
adversely as time-consuming for sensitive performance-driven
applications (Palacin et al., 2016). There is also the need of
training the predictive technique at design-time and previous
execution of the application to optimise the selection of
parameters (Galante et al., 2016; Rosa et al., 2014). Finally,
Netto et al. (2014) affirm that proactive elasticity strategies
focus only on method accuracy and ignore cloud technical
limitations such as the time of a scaling up operation, besides
being very much dependent on workload characteristics.

In our understanding, at user side, proactive elasticity is
better because it does not need to complete thresholds or
rules as the reactive approach does. However, the state-of-

78 R. da Rosa Righi et al.

the-art in proactive elasticity concerns at least one problem
related to prior user experience on using elasticity, changes
in the application code, time-consuming approach, stop-
reconfigure-and-go and need of a previous execution to tune
parameters or prediction models (Gong et al., 2010; Netto
et al., 2014; Rosa et al., 2014; Perez-Palacin et al., 2016; Roy
et al. 2011). Considering this background, we propose
ProElastic – a lightweight proactive elasticity model that
provides resource reorganisation for iterative HPC applications.
The lightweight characteristic is explained in two ways: first,
we are using ARIMA-based time series to predict the
application behaviour by monitoring CPU load of virtual
resources, which computes fast and does not need any
previous execution of the application (Kalpakis et al., 2001;
El Hag and Sharif, 2007; Masood and Schmidt, 2015);
second, the design of loosely-coupled architecture allows
the execution of scaling out operations in parallel with the
HPC application, so not blocking the application when
reconfigurations are in course. In addition, ProElastic acts at
the PaaS (Platform as a Service) level of a cloud, not imposing
any change in the application code to take profit from resource

reorganisation. Effortlessly, the programmer only compiles the
application with ProElastic middleware, which transforms a
non-elastic application in an elastic one.

Our final goal is not only to get a better execution time,
but also an equal or better cost (consumed resources
performance) when comparing ProElastic against non-elastic
and reactive elasticity managers. In Figure 1(b), we illustrate
the ProElastic’s idea on adding new resources earlier, so
reducing the application time and not executing in over- or
under-loaded situations. Based on the proposed model, we
developed and evaluated a prototype that executes a master-
slave iterative application over a private cloud built over
OpenNebula. This evaluation also considered four pertinent
input workloads to analyse the aforementioned metrics under
different load patterns. Our evaluations followed the principles
defended by Isalm et al. (2012), who argued that the use of
synthetic workloads is considered as a representative form to
evaluate elasticity in computational clouds. The results were
promising, emphasising the accuracy of the predictions which
were reflected in the values of application time and cost in
favour of ProElastic. The main scientific contributions of this
paper are the following:

 The ProElastic framework, which not only transforms a
non-elastic application in an elastic one but also presents
a communication architecture between applications
processes and the elasticity manager.

 We modelled a framework to enable a novel feature
denoted asynchronous elasticity, where VM (Virtual
Machine) transferring or consolidation happens in parallel
with application execution.

The remainder of this article will first introduce related
work in Section 2. Section 3 describes ProElastic, its
architecture and algorithms to control elasticity proactively.
A ProElastic prototype is presented in Section 4. Evaluation
methodology and a discussion of the results are presented

in Sections 5 and 6, respectively. Finally, Section 7 emphasises
the scientific contribution of the work and notes several
challenges that we can address in the future.

2 Related work

This section describes some approaches to manage elasticity
in cloud. They were divided into two groups: reactive
managers in Subsection 2.1 and proactive managers in
Subsection 2.2. Lastly, the initiatives were compared and
analysed in order to detach the current gaps in the cloud
elasticity research area.

2.1 Reactive managers

Reactive managers are those based only on thresholds to
take elasticity decisions; more precisely, resource
reconfiguration takes place when the lower or the upper
threshold is violated. The advantage of this model is its
simplicity on both decision making and information
collection, but new resources will not be available when
they are really needed because scaling out operations are
normally time-consuming. Reactive elasticity is mainly
explored on transactional and Web applications that execute
on public clouds like Amazon EC2 and Windows Azure
(Albonico et al., 2016). In the HPC scope, we highlight two
reactive elasticity initiatives: AutoElastic (da Rosa Righi
et al., 2015) and Elastack (Beernaert et al., 2012).
AutoElastic acts at the PaaS level of cloud, managing
elasticity for master-slave applications where the users do
not need to change any line in their applications to take
profit from runtime resource reconfiguration. The user must
define an SLA (Service Level Agreement) which contains
the minimum and the maximum number of VMs that could
be allocated to run the application. AutoElastic uses reactive
and horizontal elasticity, so an action is taken when a
threshold is reached to add or remove virtual machines.

Elastack (Beernaert et al., 2012) has an elasticity manager
tied at IaaS (Infrastructure as a Service) level of the OpenStack
middleware. This manager aims to enable adaptability and
system monitoring, so automatically managing the resources
of the cloud. Elastack architecture is divided into three
components: Daemon Monitor, Controller Daemon and
Serpentine Script. The monitor is a background process that
runs on each compute node, updating the manager with the
machines information. The controller is responsible for
adding and removing resources from the cloud according to
elasticity decisions. Finally, the serpentine script is the
module that decides when elasticity takes place or not.

2.2 Proactive managers

Proactive managers, unlike reactive ones, try to predict the
cloud behaviour to anticipate elasticity decisions before any
under or overload situation. When the system identifies a
future requirement, an elasticity action is immediately taken;

 Towards providing middleware-level proactive resource reorganisation 79

so when a resource is required, it is already available to the
application processes. In general, the managers here are
divided into two groups, which are composed considering the
used prediction algorithm: machine learning and statistical
model (Rosa et al., 2014). Machine learning algorithms need
more cycles of initialisation before starting the prediction
procedures than the statistical models (Rosa et al., 2014).

Rosa et al. (2014) presented an experimental tool to predict
workloads in clouds. This tool was created to assess the
demands of server resources, using historical data of the
application to predict when more resources are needed. To
predict the workloads, the authors use two different models:
Support Vector Regression and Naive Bayes. These two
machine-learning-based algorithms usually need some learning
cycles to start the prediction activity. This implementation was
developed using Amazon cloud and its Java API.

Vadara (Loff and Garcia, 2014) is a framework for
managing elasticity which is not tied to any cloud provider.
The approach of elasticity is predictive, where the system
tries to predict workloads. Data is recorded along the time,
allowing it to be applied on predictive algorithms. To predict
the application workload, Vadara uses k-Nearest Neighbours
(kNN) to combine the generic elasticity strategies. With this
algorithm, you can select the best technique according to the
latest workloads. In the tests, the Holt-Winters, ARIMA and
StructTS methods were used, so that the kNN can choose
the best for a particular workload.

The Insights Platform (Moore et al., 2013) is a framework
which offers a real-time cloud performance monitor that is in
charge of elasticity decisions. The main idea of the authors is
to transform a reactive cloud in a proactive cloud. Both
algorithms, reactive and proactive, are used to enhance
performance in the cloud, enabling then one controller for each
mode. The predictive control was created using the Weka
machine learning library, comprising three prediction models:
one based on time series and two based on Naive Bayes.

Barrett et al. (2013) present an elasticity model using the
Q-learning concept. This model aims to determine the best
resources for the current workload using Xen Hypervisor
which is a popular open source virtualisation framework that
can work on various cloud providers. The proposal has an
architecture where the user does not have to worry about
managing the cloud, simply entering an SLA with the
application requirements. Each agent makes decisions to add,
remove or keep the VMs allocated to the application. These
actions are taken according to different variables, such as cost
of the resource, penalty related to an SLA violation, CPU
used, memory usage, etc. With this architecture, the system
decides the best moment of changing a VM capacity using
the Amazon cost function for each type of virtual machine.

Nikravesh et al. (2015) investigated the best algorithm
between Support Vector Machine (SVM) and Neural
Networks (NN) for prediction of workloads. To accomplish
this, they developed different elasticity managers considering
the two aforementioned algorithms, testing them with a
predefined set of workloads. The authors used a metric named

workload performance (user requests per unit of time). The
final aim was to compare the prediction accuracy of the two
algorithms for different patterns of workloads.

Gong et al. (2010) present a cloud resource management
model that uses statistical models to predict the load and
take elasticity decisions. The article presents a manager
called PRESS and compares its performance with others
algorithms, which were implemented in the Xen platform. The
authors modelled PRESS with two prediction algorithms. The
first intends to be applied to cyclical loads using the signal
processing technique called Fast Fourier Transform. For loads
of non-cyclical work, it is used Markov chains. This model
requires some boot cycles to start the prediction machine.

Roy et al. (2011) describe a resource allocation algorithm
based on predictive models, trying to predict future workloads
in order to reduce the application cost. The cost is given by
some factors such as the SLA violations, rental cost of
resources and the cost associated with the configuration
changes. To be able to predict future workloads, the authors
used the autoregressive moving average (ARMA) approach. In
addition to the ARMA, the authors used Mean Value Analysis
to identify the bottlenecks in the application, where one of the
parameters of this algorithm is the prediction given by ARMA.
Finally, it is calculated the cost of making changes in the cloud.
This is necessary because each change in the cloud has a cost
associated to it, so it is advantageous to know the cost and
when it is the best time to apply a particular change.

2.3 Analysis and research opportunities

Table 1 presents a comparison among the initiatives discussed
in this section. Considering the last column, we observe
that there are two main application models in the cloud:
(i) transactional, which are accessed through the Web and
execute in a request-reply interaction pattern (such as
e-commerce) and; (ii) batch, in which a user launches a
request and expects its results (such as data mining, graphics
rendering and scientific application demands) (Martineau
et al., 2016). Table 1 shows that all work that provide
proactive elasticity cover transactional applications, where
metrics like cost and system throughput are prioritised. Only
two works (Beernaert et al., 2012; da Rosa Righi et al., 2015)
were built to improve batch applications, but they do not
provide any kind of proactiveness on resource management.
We also observe that most of those works (Gong et al., 2010;
Rosa et al., 2014; Roy et al., 2011; Barrett et al., 2013) focus on
reducing cloud costs. In terms of transactional applications
submitted to the cloud this is a major concern, since users are
usually subjected to pay for using the cloud, like Amazon EC2,
and every hour (the charge unit varies among the providers) of
allocation is charged. On the other hand, the main objective on
executing batch applications is performance, because of these
applications normally represent CPU- and/or IO-intensive
problems that require distributed resources and long-running
demands.

80 R. da Rosa Righi et al.

Table 1 Related work comparison

Authors Elasticity Prediction algorithm Focus manager Application Model

Da Rosa Righi et al. (2015)
(AutoElastic)

Reactive – High-performance Batch, master-slave
iterative

Beernaert et al. (2012)
(Elastack)

Reactive – Automating elasticity Batch, no application
model

Rosa et al. (2014) Proactive Machine learning (SVR and
Naïve Bayes)

Avoid cloud
oversizing

Transactional, web
requests

Gong et al. (2010) (PRESS) Proactive Time Series (Fast Fourier
transform and Markov chain)

Reduce cost and SLO
violations

Transactional, web
requests

Loff and Garcia (2014) Proactive Machine learning (kNN) Manager uncoupled
from the provider

Transactional, web
requests

Roy et al. (2011) Proactive Time Series (ARMA) Reduce cost Transactional, web
requests

Moore et al. (2013) (Platform
Insights)

Proactive Machine learning (Time
series and Naïve Bayes)

Transform reactive
cloud in proactive

Transactional, web
requests

Barrett et al. (2013) Proactive Machine learning
(Q-Learning)

Optimise cloud
resources

Transactional, web
requests

Nikravesh et al. (2015) Proactive Machine learning(SVM e
NN)

Predict workload Transactional, web
requests

Comparing the proactive elasticity managers, we observe
that machine learning techniques are used in most of the
initiatives (Rosa et al., 2014; Loff and Garcia, 2014; Moore
et al., 2013; Barrett et al., 2013; Nikravesh et al., 2015).
Given that these managers are in charge of supporting
transactional applications, the use of machine learning
seems the most appropriate method here because most of
the prediction problems is to identify request patterns to
web servers. Chang (2016) affirms that sometimes, or yet in
most of the times, machine learning will fail, thus it requires
some understanding of the problem beforehand in order to
apply the right parameters. Machine learning-based
proactiveness requires a startup period greater than the
statistical models, which is not a critical problem for web
applications, but can become an issue for batch demands
(Chang, 2016). In addition, machine learning techniques are
normally heavier in terms of CPU cycles than the statistical
model, so it is common to employ clusters and/or GPU
boards to execute them efficiently.

AutoElastic (da Rosa Righi, 2015) and Elastack (Beernaert
et al., 2012) initiatives aim to increase performance for batch
applications, without any feature related to proactivity, but
using thresholds to accomplish elasticity. Other proposals
(Gong et al., 2010; Rosa et al., 2014; Roy et al., 2011; Loff
and Garcia, 2014; Moore, 2013; Barrett et al., 2013;
Nikravesh et al., 2015) operate proactively and seek to
improve application performance, but are employed on
transactional applications. This kind of demand only
presents a request-reply interaction, where a manager: (i)
receives input requests; (ii) manages load balancing and
elasticity and; (iii) dispatches requests and receives replies
to/from processing replicas. The same does not occur on
batch applications, where data and control dependencies and
inter-process communication (i.e., communication among

the replicas) can take place. Finally, we identified a gap on
developing an elasticity manager that combines: (i) lightweight
proactive elasticity; (ii) focus on HPC applications;
(iii) performance (both in terms of application time and
prediction calculus) and; (iv) the interference of the
user/programmer must be as little as possible.

3 ProElastic proposal

This section presents the ProElastic model, describing firstly
its general ideas and, secondly, its architecture and elasticity
model.

3.1 ProElastic principles

ProElastic is a proactive elasticity model that aims to
improve performance, but not neglecting the cost (here
denoted as performance used resources), for iterative
master-slave applications that run in the cloud. Our idea is
to provide proactive elasticity in a transparent and effortless
way at user viewpoint, who does not need to write rules and
actions for resource reconfiguration as required in reactive
approaches. In addition, users must not need to change their
parallel application, so not inserting any elasticity calls from a
particular library or modifying the application to add/remove
resources by themselves. Acting at the PaaS level of a cloud,
ProElastic firstly transforms a non-elastic application in an
elastic one and secondly, it manages resource (and also
application processes, consequently) reorganisation through
automatic VM allocation and consolidation procedures. The
proposal must be aware of the VM instantiation overhead to
provide seamless elasticity, i.e., in a non-prohibitive way for
HPC applications.

 Towards providing middleware-level proactive resource reorganisation 81

Figure 2 General ideas on using elasticity: (a) standard approach adopted by Amazon AWS and Windows Azure, in which the user must
pre-configure a set of elasticity rules and actions; (b) Prolastic idea, contemplating a manager that coordinates the elasticity
actions and configurations on behalf of the user

 (a) (b)

Figure 2(a) illustrates the traditional approaches of providing
cloud elasticity to HPC applications, while part (b) highlights
ProElastic’s idea. We are offering a middleware in which user
must compile his/her application with, and also a manager
that controls resource reorganisation. The proactive nature of
the model refers to not only the interactionless behaviour at
user viewpoint, but also the capacity to anticipate elasticity
actions based on historical data. To accomplish this, we are
using the statistical model to provide predictions; more
precisely, ARIMA-based (Kalpakis et al., 2001; El Hag and
Sharif, 2007; Masood and Schimidt, 2015) time-series were
used to compute the load metric for the application. Other
prediction algorithms like ARMA and Moving Average
(MA) were passed over because they present at least one of
the problems: demonstrate a not accurate prediction; time-
consuming; many boot cycles to start predictions. Taking into
account our focus on CPU-bound HPC applications,
ProElastic works with the CPU metric of the virtual machines
in the time series calculus.

We are focusing on master-slave iterative applications,
i.e., applications that are characterised as a collection of
loops. Although trivial, this style is used in several areas, such
as genetic algorithms, Monte Carlo techniques, geometric
transformations in computer graphics, SETI@Home-like
applications, cryptography algorithms and applications
that follow the Embarrassingly Parallel computing model
(Martineau et al., 2016; Raveendran et al., 2011). Particularly,
the iterative nature is pertinent to our purposes for the
following rationale: (i) unlike using application time, the
use of the number of loop refers to a significative meaning
in the prediction calculus; (ii) either the beginning or the
end of loop can be a pertinent part to insert elasticity code;
(iii) in the beginning of a loop, we have a consistent global
state of the distributed system in which there are not in-
transit communications.

3.2 Architecture

Figure 3 shows the ProElastic architecture, highlighting
both the elasticity manager and cloud components.
ProElastic employs horizontal elasticity in which the work
granularity is a node with c virtual machines, where c
denotes the number of processing cores. Each virtual
machine refers to a slave process that runs solely to exploit
the full power of a single core. We are neglecting the use of
vertical elasticity (i.e., VM resizing; Galante et al., 2016)
because this approach is limited to the processing power of
a single node. In addition, VM resizing normally implies in the
stop-reconfigure-and-go approach, which is prohibitive for
time sensitive applications like the HPC ones. Thus, horizontal
approach is useful for enabling resource deallocation and for
enlarging the infrastructure beyond the limits of a single
resource.

The most important module of the ProElastic
architecture is the Prediction Engine, which is in charge of
predicting load values based on the CPU metric. The
manager uses the API offered by the cloud provider to both
collect monitoring data and to trigger elasticity actions. The
Evaluator module receives the predicted load from the
Prediction Engine and uses this data on elasticity decision
making. If a reconfiguration is required, the manager sends
a notification to the master process. The communication
between the manager and the master process is performed
using a shared data area, which can be enabled with
Network File System (NFS), Advanced Message Queuing
Protocol (AMQP) or JavaSpaces. The use of a shared area
for data interaction among VM instances is a common
approach in private clouds (Vozmediano et al., 2012; Cai
et al., 2012). ProElastic manager uses SSH to login in the
cloud front-end and to read/write from/to the shared area
afterwards.

82 R. da Rosa Righi et al.

Figure 3 ProElastic architecture. Here, c denotes the number of cores inside a node, m is the number of nodes, and n refers to the
number of virtual machines (VMs) running slave processes, which is obtained by c m

Concerning the focus on providing a lightweight proactive
approach, ProElastic uses ARIMA-based time series which is
quickly computed only using a single node; in our case, in
the manager. In addition, the lightweight term is also related to
the design of the proposed model. Instead of offering an
application-sided elasticity, the use of a manager brings the
non-blocking benefit at the application perspective when
resource reconfigurations take place. We named this feature as
asynchronous elasticity, in which the application is notified as
soon as a new computing VM instance (scale out) is available
in the system without impairing its normal execution flow.
However, this non-blocking operation implies in the following
question: How can we notify the application about the resource
reconfiguration? We used the shared data area for this purpose.
At each loop iteration, the master verifies in the shared data
area whether the elasticity manager signalises the existence of
resources to add or drop to/from the communication topology.
In detail, ProElastic enables three notifications:

 The manager writes to the shared area, whereas
application processes read from it:

– Notification 1: there is a new compute node with c
VMs, each one with a new application process that
has an IP and a unique identification.

– Notification 2: request permission to consolidate a
compute node and its VMs.

 A single application process writes to the shared area,
whereas the manager reads from it:

– Notification 3: this gives permission to consolidate
the previously requested node.

Based on Notification 1, the current processes may start
working with the new set of resources (a single node with c
VMs, each one with a new process). Figure 4 illustrates the
functioning of the ProElastic Manager when creating a new
slave, so launching Notification1 afterwards. Notification 2 is
relevant for the following reasons: (i) not stopping a process
executing while either communication or computation
procedures take place; (ii) ensuring that application will not be
aborted with the sudden interruption of one or more processes.
In particular, the second reason is important for MPI (Message
Passing Interface) applications that run over TCP/IP networks,
since they commonly crash with a premature termination of
any process (Galante et al. 2016). Notification 3 is normally
taken by a master process, which ensures that the application
has a consistent global state where processes may be
disconnected properly. Afterwards, the remaining processes do
not exchange any message to the given node.

Figure 4 Functioning of the master, the new slave and the ProElastic Manager to enable the asynchronous elasticity

 Towards providing middleware-level proactive resource reorganisation 83

3.3 Elasticity management and prediction model

ProElastic addresses scaling in and out operations in such a
way that elasticity actions are anticipated, so resources are
completely delivered earlier than reaching either an under-
or over-provisioned situation. Since ProElastic performs
periodical monitoring, elasticity can occur only in discrete
observation points where cloud data collection and elasticity
decision making are activated. Evaluator and Prediction
Engine modules are in charge of managing elasticity
actions. Their interactions can be observed in the flowchart
of Figure 5, which depicts the ProElastic’s periodical
monitoring loop. Below we detail the responsibility of each
module:

 Evaluator: This modules act in three moments. First,
when a monitoring observation takes place, Data
Collector module captures all CPU loads from all
running VMs. Evaluator takes this data to compute

_CPU load as the arithmetic average of the load values.

Second, _CPU load is sent to the Prediction Engine

module which performs a series of calculus, so returning
_Forecast load back to the Evaluator afterwards. Third,

to decide about elasticity actions, the Evaluator must
decide if _Forecast load indicates an overloaded or

underloaded situation. Considering related work (Netto
et al., 2014; da Rosa Righi et al., 2015; Galante et al.,
2016), we are using lower and upper load limits for this;
particularly, the values of 20% and 80% of CPU load
were adopted. If one of these limits is exceeded, a
resource reconfiguration takes place to address such a
situation. Our work grain is a single compute node. A
scaling out operation involves the addition of a node and
c VMs (where c denotes the number of processing cores
of the node), while a scaling in operation turns off a
particular node and all VMs running on it.

 Prediction Engine: After receiving _CPU load relative

to the tho monitoring observation, Prediction Engine
stores this value locally and performs two operations:
(i) development of a regression equation that better fits
all stored _CPU load values from now up the last VM

delivery or up to the beginning of the application; (ii)
using the aforesaid equation, the idea is to determine
the system load in the future. To accomplish (i), we
configure ARIMA to act as the Holt-Winters method
(El Hag and Sharif, 2007), so considering the Triple
Exponential Smoothing approach to propose the
equation. This method assigns exponentially decreasing
weights as the observation get older. Taking into
account this equation in the ()f x style, in (ii) we must

decide x as the moment that we would like to predict
the CPU load. In other words, considering that we
know the number of o, we must decide ahead since o+
ahead will serve as x in the equation. To compute
ahead, we are using equation (1). Equation (1)
considers the maximum value among all times
regarding already performed scaling out operations,

which is feasible thanks to always using the same VM
template that represents a slave process. Finally, the
forecasted value is assigned to _Forecast load , which

is sent to the Evaluator module.

((_ _))
=

_ _

Abs Max Scaling out time
ahead

monitoring observation period
 (1)

Figure 5 Flowchart of the ProElastic Manager periodical
monitoring loop. First, the Data Collector module collects
CPU load values to compute the total load. It needs a
collection of values to start the Prediction Engine. Second,
the Prediction Engine uses this collection to create an
equation, so using it to verify that a threshold will be
violated when crossing n loops ahead in the execution.
Finally, elasticity actions take place if the Evaluator
detects the need to add or remove resources

84 R. da Rosa Righi et al.

The variable ahead points out as soon as an elasticity action
must be done. Equation (1) shows how we compute this
value, preventing us from two pitfalls: (i) if ahead is
considered as very large, the prediction method can miss the
next short-term steps of the application behaviour so
incurring in an eventual false-positive or false-negative
elasticity situation; (ii) if ahead is considered as too short,
an elasticity action can deliver the resources after its real need
by the application, so incurring in an overloaded situation and
performance loss. In equation (1), Scaling_out_time considers
the VM instantiation time which involves the transferring of a
VM template that will run a slave process and the complete
bootstrap of the operating system. Figure 6 illustrates an
example in which an elasticity action is taken because
of ProElastic concluded that ahead monitoring observations
in advance the system would execute in an overloaded
state.

Figure 6 Example of elasticity prediction. In the green ball,
ProElastic predicts a future value of CPU, so a new
VM is instantiated because the value of the forecast
CPU exceeds the upper threshold. This VM is ready for
use after a few cycles then reducing the CPU load
thanks to a better load balance among a greater number
of resources

ARIMA was chosen because it is a widely used model in
several areas that need any kind of time series-based
prediction (El Hag and Sharif, 2007; Masood and Schmidt,
2015). The algorithm only begins to predict after a few boot
cycles (fewer cycles than those needed in the machine
learning model) (Kalpakis et al., 2001). Based on (Kalpakis
et al., 2001), we are using 5 for this parameter, so
5 _ _monitoring observation period denotes the time in

the beginning of the execution where none resource
reconfiguration takes place. In addition, this time is also
considered when delivering a new VM, since historical data
regarding _CPU load values is reset so new values must be

collected to restart the prediction engine. In the rest of the
article, we also reference this moment as warm-up prediction
period.

3.4 Application model

ProElastic acts at the middleware level, not imposing any
modification in application code. However, the user must

write his or her application following a set of rules, as we
will discuss in this section. ProElastic explores data parallelism
on iterative message-passing applications. Currently, it
works with master-slave applications, which is a parallel
programming model extensively used in the several contexts.
However, we emphasise that the framework allows the existing
processes of the HPC application to know the identifier
of the new instantiated processes. This enables an all-to-all
communication topology and the support, for example, of bulk
synchronous parallel and pipeline programming models
(Zomaya et al., 1996). The ProElastic parallel applications
follow the multiple program multiple data (MPMD)
principle (Zomaya et al., 1996), in which master and slave
processes have different executable codes; each is mapped
to a different VM template. The intent is to offer application
decoupling for processes with different purposes, enabling
readability and facilitating the implementation of elasticity.

Figures 7(a) and (b) present pseudocode of a ProElastic-
supported iterative application. The master code executes a
series of tasks, capturing each one sequentially and
parallelising one-by-one to be processed by slave processes.
Figure 8 illustrates the synchronous functioning of the iterative
application with a malleable number of slave processes.
ProElastic works with the following MPI 2.0-like
communications directives, as highlighted in Figure 7: (i)
publication of a connection port; (ii) looking for a server,
adopting a connection port as a starting point; (iii) connection
request; (iv) connection accept; (v) disconnection request; and
(vi) pairwise send/receive data. Different from the approach
in which the master process launches the slaves using a
spawn-like directive, the proposed model operates according
to another approach of MPI 2.0 for dynamic process
management: connection-oriented communication using
point-to-point, as sockets do. The launching of a VM
automatically occurs in the execution of a slave process,
which requests a connection with the master afterwards. Here,
we emphasise that an application with ProElastic does not
need to follow the MPI 2.0 interface, but the semantic of each
aforementioned directive.

The transformation of a non-elastic application into an
elastic one can be modelled at the PaaS level by one of
the following three strategies: (i) polymorphism can
overload a method to provide elasticity for object-oriented
implementations; (ii) a source-to-source translator can be
used to insert code between lines 2 and 3; (iii) a wrapper for
the function in line 3 of Figure 7(a) can be developed for
procedural languages. Independent of the strategy, the code
required for elasticity is simple, as shown in Figure 7(c).
First, we must verify whether there is a new action from the
ProElastic manager in the shared data area. If Notification 1
has been activated, the master process reads the information
concerning the new slaves and knows that it must expect
new connections from them. In the case of Notification 2,
the master removes from its group the processes that belong
to a specific node. After doing that, it triggers Notification 3.

 Towards providing middleware-level proactive resource reorganisation 85

Figure 7 (a) and (b): multiple program multiple data-like parallel application model supported by ProElastic; and (c) elasticity code to be
inserted transparently by ProElastic in the code of the Master when considering the user viewpoint

Figure 8 Application execution considering a malleable number of slave processes

Although the design of ProElastic considers master-slave
applications, the iterative modelling and the use of MPI 2.0-like
directives facilitates both the addition and removal of
processes, and the establishment of completely new and
arbitrary topologies. At the implementation level, it is possible
to optimise connection and disconnection procedures if a
particular slave process remains active in the process list. This
improvement can avoid too many TCP connections that require
a three-way handshake protocol, which might be expensive for
some applications.

4 Prototype implementation

This section describes the implementation decisions on
writing a ProElastic prototype. We are using the OpenNebula

(Moreno-Vozmediano et al., 2012) private cloud package to
assembly our cloud environment. In addition, its Java API
was also used to implement VM data monitoring and
scaling in and out operations. The cloud configuration
consists of eleven computers: ten of them are used as
computing nodes and one acts as cloud front-end. All
computers have the same configuration, which includes a
Core 2 Duo E7500 2.9GHz processor and 4GB of RAM.
The network interface cards are Gigabit Ethernet, however
the switch is Fast Ethernet.

To implement the prediction algorithm, ARIMA, we
used the JRI library that communicates with the R language.
We opted to work with R because it already has a native
library to work with ARIMA. The requirement here is that
we need to install R on the same machine that ProElastic
will operates. Tests conducted to evaluate the performance

86 R. da Rosa Righi et al.

of the Java with R integration demonstrated a very low
overhead: the prediction engine takes about 500 milliseconds to
return a response of a future metric when 20 values are
considered in the time series. In the tests, each observation lasts
approximately 15 seconds, so the aforesaid prediction time is
not a performance problem.

The ARIMA has several configurations, based on three
variables: p is the number of autoregressive terms, d is the
number of differences and q is the number of terms in the
moving average. The configuration used in this work
considered the ARIMA with the following values: p = 0,
d = 2 and q = 1. This configuration performs a triple
exponential smoothing. Several ProElastic tests with different
configuration possibilities for ARIMA were conducted and the
aforementioned configuration was chosen since achieved the
best performance.

5 Evaluation methodology

We developed a master-slave application that computes the
numerical integration of a series of equations. The application
follows the Newton-Cotes postulate that considers the area
inside a closed interval by computing the area of several
trapezoids (da Rosa Righi et al., 2015). The larger the number
of subintervals, i.e. the number of trapezoids, the larger the
CPU cycles to compute the application. The master reads a file
containing a series of equations, so each loop is in charge of
computing a single equation by passing a set of subintervals
and the input equation for the existing slave processes. Aiming
at observing ProElastic under different load situations, we
designed four workloads: constant, ascending, descending and
wave. Table 2 presents how we are computing them. We
consider load(x) as the number of sub-intervals that will be
calculated at each application iteration. For example, the
Constant load maintains the number of processed subintervals
as being the same for all equations, while in the descending
load the application starts with a large number of subintervals,
which becomes decrescent along the time.

Using the aforesaid application and the proposed
workloads, we also modelled three scenarios to evaluate
ProElastic:

 Scenario 1 (Non-Elastic) considers the execution of the
master-slave application in a non-elastic fashion, i.e.,
with a fixed number of processes.

 Scenario 2 (AutoElastic) was developed to test the
execution of the application when considering a reactive-
based elasticity manager named AutoElastic. As
ProElastic, AutoElastic also considers the CPU load as
main metric on resource reorganisation decision making.
Based on (da Rosa Righi et al., 2015), AutoElastic was
configured with the values of 20% and 80% for the lower
and upper thresholds, respectively.

 Scenario 3 (ProElastic) presents the performance of
the master-slave application which was compiled and
executed with ProElastic.

Besides the performance perspective that represents final
application time, we also compute the energy and the cost
metrics. Particularly, energy consumption in computing is an
important issue due to the increasing energy cost (Lynar et al.,
2011; Lynar et al., 2013). Thus, we investigate the energy
consumption by measuring resource allocation. Here, energy
refers to the resource consumption which is rigid in Scenario 1
and malleable in Scenarios 2 and 3. To estimate the energy of
the application, it is necessary to know the time that each
deployment of virtual machines took place (see equation 2). In
this equation, n means the maximum number of allocated
VMs and ()T i is the time spent when running a configuration
with i VMs. For example, consider the situation: 20s with
2VMs, 120s with 4VMs, 100s with 6VMs and 80s with 4VMs;
here we have = 20 2energy (120 4 80 4) 100 6

= 1440. The cost, in its turn, is used to analyse how effective is
the execution, with or without elasticity. Based on the standard
notion of cost in the parallel computing area, which considers
time and processors, here we use time and the previously
computed energy metric (see equation 3). In this equation,
Timeapp refers to the total time to run the application. Finally,
since ProElastic is a proactive manager we are also analysing
the accuracy of the prediction algorithm, comparing what was
predicted against the actual CPU values.

=1

= (())
n

i

Energy i T i (2)

= appCost Energy Time (3)

Table 2 Functions that define the input workloads

Load Load Function
Parameters

v w t z

Constant load () 2x w – 1,000,000 – –

Ascending load ()x x t z – – 0.2 500

Descending load () ()x w x t z – 1,000,000 0.2 500

Wave load () ()x v z sen t z v z w 1 500 0.00125 500,000

 Towards providing middleware-level proactive resource reorganisation 87

6 Results

This section describes the results, which were organised in
two subsections: (i) Subsection 6.1 presents the values of
time, energy and cost for the three considered scenarios;
(ii) Subsection 6.2 highlights some ProElastic executions,
showing resource allocation and both predicted and actual
CPU loads along the time.

6.1 Analysing time, energy and cost metrics

Table 3 shows the application time in seconds when
considering the four workloads and three scenarios. The
non-elastic execution was tested with 1, 2, 3 and 4 nodes.
As detailed in Section 4, each node executes 2 VMs, each
VM with a single slave process. We also present different
initial configurations for AutoElastic and ProElastic. Table 3
shows that ProElastic is faster than AutoElastic, being also
the best option in the most of the cases when comparing
scenarios Non-Elastic and ProElastic. We observe that the
initial configuration is crucial for performance purposes. For
example, the execution with 4 fixed nodes presents a better
performance when compared with elastic executions that
started with 1 or 2 nodes. In this case, even enlarging the
number of resources in AutoElastic and ProElastic, the
application is not long-running enough to outperform the
execution that started from a larger number of compute
nodes. However, the larger the resource allocation along the
time, the larger the energy metric as presented in Table 4. It
is clear that time and energy are inversely proportional
metrics. This explains the higher indexes for ProElastic in
Table 4.

Table 3 Application time in seconds

 Workload

N
od

es

C
on

st
an

t

W
av

e

A
sc

en
di

ng

D
ec

re
as

in
g

Non-Elastic

1 4043 4068 4026 4079

2 2482 2574 2511 2531

3 1736 1842 1765 1907

4 1610 1701 1706 1651

AutoElastic

1 2118 2340 2179 2044

2 2356 1843 2122 1732

3 1756 1768 2092 1616

ProElastic

1 1821 2034 1673 1880

2 1627 1752 1527 1675

3 1550 1660 1524 1516

Table 4 Energy consumption in accordance with equation (2)

 Workload

N
od

es

C
on

st
an

t

W
av

e

A
sc

en
di

ng

D
ec

re
as

in
g

Non-Elastic

1 8086 8135 8052 8158

2 9928 10,297 10045 10125

3 10417 11051 10590 11444

4 12876 13610 13649 13205

AutoElastic

1 10578 12185 10282 11464

2 9424 12635 10635 12812

3 10537 12540 9880 12486

ProElastic

1 12154 14002 12645 12904

2 12136 13661 12534 14382

3 11841 13854 12530 14377

Both energy and time values were used to compute the results
presented in Table 5. The results of cost emphasise the benefits
of using cloud elasticity, where elastic execution obtained
either a better or a competitive cost when compared with non-
elastic executions. The best results of ProElastic appear when
using 1 or 2 nodes: these situations present the advantages of
the resource management on allocating and deallocating
resources, which increases the application time but not causing
a prohibitive use of energy for that. In addition, Table 5
presents the advantages of using ProElastic when confronted to
AutoElastic: the former presents better execution time in all
of the 12 cases (see Table 3) and a better cost in 7 of them
(see Table 5).

Table 5 Cost in accordance with equation (3)

 Workload

N
od

es

C
on

st
an

t

W
av

e

A
sc

en
di

ng

D
ec

re
as

in
g

Non-Elastic

1 32,691,698 33,093,180 32,417,352 33,280,561

2 24,641,296 26,504,478 25,222,995 25,626,375

3 18,083,912 20,355,942 18,691,350 21,823,708

4 20,730,360 23,150,610 23,285,194 21,801,455

AutoElastic

1 22,404,204 28,512,900 22,404,478 23,432,416

2 22,202,944 23,286,305 22,567,470 22,190,384

3 18,502,972 22,170,720 20,668,960 20,177,376

ProElastic

1 22,132,434 28,480,068 21,155,085 24,259,520

2 19,745,272 23,934,072 19,139,418 24,089,850

3 18,353,550 22,997,640 19,095,720 21,795,532

88 R. da Rosa Righi et al.

6.2 Analysing the behaviour of the ProElastic execution

The idea of this subsection is to present graphs regarding the
accuracy of the prediction and how resource reconfiguration
happens along the time. Figures 9 , 10 and 11 depict the CPU
load behaviour for the constant, ascending and descending
workloads. For each graph in these figures, we present the
real and the predicted CPU loads, the moments of scaling out
operations, the moments where a new resource is delivered to

the application and the warm-up prediction period. Particularly,
this last information refers to the time that we gather CPU
values but there are not enough quantitatively to start the
ARIMA prediction engine. In Figure 9, we observed that the
predicted values are very close to real ones. Two VMs were
allocated when passing 75 s of execution, which were delivered
after crossing 240 s. The same was perceived for 330 s and
495s. After adding 4 VMs, the application executes in steady
way with a mean CPU load of 68%.

Figure 9 Application behaviour of the constant workload with ProElastic

Figure 10 Application behaviour of the ascending workload with ProElastic

 Towards providing middleware-level proactive resource reorganisation 89

Figure 11 Application behaviour of the descending workload with ProElastic

Figure 12 Resource allocation versus CPU load when executing the ascending workload. (a), (b) and (c) using ProElastic; (d), (e) and
(f) using AutoElastic and (g), (h) and (i) using a non-elastic approach. We are starting with 1 node in the first row, 2 nodes in the
second row and 3 nodes in the third row

90 R. da Rosa Righi et al.

Figure 13 Resource allocation versus CPU load when executing the wave workload. (a), (b) and (c) using ProElastic; (d), (e) and (f) using
AutoElastic and (g), (h) and (i) using a non-elastic approach. We are starting with 1 in the first row, 2 nodes in the second row
and 3 nodes in the third row

Considering the ascending graph in Figure 10, the CPU load
never reaches the upper threshold, i.e., we do not have
violations. However, elasticity actions are not conducted by
the CPU load itself, but by the predicted values; so, we have
5 moments of VM allocation which explains the obtained
performance. In other words, the prediction was decisive for
improving application performance by triggering scaling out
operations accurately. The weakness point here is the wide
variation between CPU load and the predicted value, where
some peaks take place for this last metric. Considering the
behaviour of the descending workload, Figure 11 also
presents peaks in the prediction data. But these peaks were
responsible, first for allocating resources to execute the
application faster; second to deallocate resources since a
descending pattern was detected in the time series.

Figures 12 and 13 illustrate the application behaviour of
the three scenarios when executing the ascending and wave
workloads. In parts (d), (e) and (f) of these figures, we can

observe that resource allocation only happens when
exceeding the thresholds and, consequently, the application
executes in an overloaded state during a particular time up
to delivering new VMs. Figures 12 and 13 also present three
important information: (i) resource allocations are faster in
ProElastic when confronted to AutoElastic, highlighting the
lack of reactiveness of this last approach; (ii) an application
compiled with ProElastic executes quicker if compared to
the other scenarios (in some cases, more than 3 times
faster); (iii) the allocation of more resources, but not stressing
them, was responsible for the ProElastic results. Exploring
information (iii), in terms of performance, it is better to have 2
nodes, each one with 70% of CPU load, instead of using only
one node with 90% or more of CPU load. In addition, the
results in Table 5 show that ProElastic’s elasticity approach is
not prohibitive; in contrary, we not only efficiently manage the
number of resources to get performance but also obtained
competitive or better values of cost.

 Towards providing middleware-level proactive resource reorganisation 91

In addition, Figure 12 presents a graph of the ascending
workload that presents a relationship between CPU load and
the number of running VMs. In this kind of graphs, it is
pertinent to observe that exactly in the moment where a new
resource is delivered, we have a better load balancing which
involves the division of computing demands among a larger
number of slave processes. Thus, at this moment, the load
decreases in response to this resource reorganisation action.
Immediately after providing a new resource, the load
abruptly drops, so arising afterwards. In this figure, we
observe the proactive nature of the ProElastic manager,
which anticipates scaling out decisions so delivering
resources always before reaching an index load indicated by
the upper threshold.

7 Conclusion

Demand for HPC continues to grow, driven in large part by
ever increasing demands for more accurate and faster
simulations to meet new regulatory requirements, to increase
safety or to reduce financial risks. Aiming at fitting this
statement, this article presented a model named ProElastic
and its functioning in the HPC scope to optimise cloud
resource allocation in a proactive way. ProElastic acts at
middleware level targeting iterative message-passing
applications that can be easily implemented in MPI 2, which
offers a sockets-based programming style for dynamic
process creation. The use of time series and ARIMA-based
prediction, together with an estimation of the scaling out
operation time and the frequency of periodical monitoring,
was decisive to accurately anticipate resource reconfiguration
actions in such a way their delivery happens before the
moment in which they are really needed by the application.
The main scientific contribution is the ProElastic framework,
which not only transforms a non-elastic application in an
elastic one but also presents a communication architecture
between application’s processes and the elasticity manager.
Moreover, considering the time requirements of HPC
applications, we modelled a framework to enable a novel
feature denoted asynchronous elasticity, where VM transferring
or consolidation happens in parallel with application execution.

ProElastic was evaluated with a prototype that ran a
numerical integration application when considering three
metrics (time, energy and cost) and three scenarios (non-
elastic, elastic with a reactive manager named AutoElastic
and ProElastic). The results emphasised the performance
gains with ProElastic when confronted to the other
scenarios. These gains range from 7% to 48% in favor of
ProElastic when analysing Table 3. Also pertinent, this
reduction in the application time is accompanied with a non-
prohibitive use of resources, as stated in the cost values
obtained with ProElastic (see Table 5 for details).

Although achieving accuracy and performance, future
research concerns the employment of other prediction
policies, such as neural networks and SVM. In addition, the
study of the elasticity grain and the execution of highly
irregular applications also contemplate future steps. The

grain, in particular, refers to the number of nodes and VMs
involved on each elasticity action. Regarding the target
application, although the numerical integration application
be useful to evaluate ProElastic ideas, we intend to explore
elasticity on highly-dynamic applications (Jin et al., 2014).
Finally, our plans also consider to extend ProElastic to
cover elasticity on other HPC programming models, such as
divide-and-conquer, pipeline and bulk-synchronous parallel
(BSP).

Acknowledgement

This work was partially supported by the following
Brazilian agencies: CNPq, FAPERGS and CAPES.

References

Albonico, M., Mottu, J.-M. and Sunyé, G. (2016) ‘Controlling the
elasticity of web applications on cloud computing’, Proceedings
of the 31st Annual ACM Symposium on Applied Computing,
SAC’16, New York, NY, USA, ACM, pp.816–819.

Barrett, E., Howley, E. and Duggan, J. (2013) ‘Applying
reinforcement learning towards automating resource allocation
and application scalability in the cloud’, Concurrency and
Computation: Practice and Experience, Vol. 25, No. 12,
pp.1656–1674.

Beernaert, L., Matos, M., Vilaça, R. and Oliveira, R. (2012)
‘Automatic elasticity in openstack’, Proceedings of the
Workshop on Secure and Dependable Middleware for Cloud
Monitoring and Management, SDMCMM’12, New York, NY,
USA, ACM, pp.2:1–2:6.

Cai, B., Xu, F., Ye, F. and Zhou. W. (2012) ‘Research and
application of migrating legacy systems to the private cloud
platform with cloudstack’, Automation and Logistics (ICAL),
2012 IEEE International Conference on, pp.400–404.

Chang, F. (2016) ‘Forecasting production quantity by integrating
time series forecast technologies and artificial intelligence
methods’, Proceedings of the 3rd Multidisciplinary
International Social Networks Conference on Social
Informatics 2016, Data Science 2016, MISNC, SI, DS 2016,
New York, NY, USA, ACM, pp.9:1–9:5.

Chilipirea, C., Constantin, A., Popa, D., Crintea, O. and Dobre, C.
(2016) ‘Cloud elasticity: going beyond demand as user load’,
Proceedings of the 3rd International Workshop on Adaptive
Resource Management and Scheduling for Cloud Computing,
ARMS-CC’16, New York, NY, USA, ACM, pp.46–51.

Coutinho, E.F., Rego, P.A.L., Gomes, D.G. and de Souza, J.N.
(2016) ‘An architecture for providing elasticity based on
autonomic computing concepts’, Proceedings of the 31st
Annual ACM Symposium on Applied Computing, SAC’16,
New York, NY, USA, ACM, pp.412–419.

da Rosa Righi, R., Rodrigues, V.F., da Costa, C.A., Kreutz, D. and
Heiss, H.-U. (2015) ‘Towards cloud-based asynchronous
elasticity for iterative HPC applications’, Journal of Physics:
Conference Series, Vol. 649, No. 1, 012006.

El Hag, H. and Sharif, S.M. (2007) ‘An adjusted ARIMA model
for internet traffic’, AFRICON 2007, pp.1–6.

Galante, G., De Bona, L.C.E., Mury, A.R., Schulze, B. and da
Rosa Righi, R. (2016) ‘An analysis of public clouds elasticity
in the execution of scientific applications: a survey’, Journal
of Grid Computing, Vol. 14, No. 2, pp.193–216.

92 R. da Rosa Righi et al.

Gong, Z., Gu, X. and Wilkes, J. (2010) ‘Press: predictive elastic
resource scaling for cloud systems’, Network and Service
Management (CNSM), 2010 International Conference on,
Niagara Falls, ON, IEEE, pp.9–16.

Harvey, P., Bakanov, K., Spence, I. and Nikolopoulos, D.S. (2016) ‘A
scalable runtime for the ecoscale heterogeneous exascale
hardware platform’, Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers,
ROSS’16, New York, NY, USA, ACM, pp.7:1–7:8.

Islam, S., Lee, K., Fekete, A. and Liu, A. (2012) ‘How a consumer can
measure elasticity for cloud platforms’, Proceedings of the 3rd
Joint WOSP/SIPEW International Conference on Performance
Engineering, ICPE’12, New York, NY, USA, ACM, pp.85–96.

Jin, L., Cong, D., Guangyi, L. and Jilai, Y. (2014) ‘Short-term net
feeder load forecasting of microgrid considering weather
conditions’, Energy Conference (ENERGYCON), 2014 IEEE
International, May, pp.1205–1209.

Kalpakis, K., Gada, D. and Puttagunta, V. (2001) ‘Distance
measures for effective clustering of ARIMA time-series’,
Data Mining, 2001. ICDM 2001, Proceedings IEEE
International Conference on, IEEE, pp.273–280.

Loff, J. and Garcia, J. (2014) ‘Vadara: predictive elasticity for cloud
applications’, Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on,
Singapore, IEEE, pp.541–546.

Lorido-Botrán, T., Miguel-Alonso, J. and Lozano, J.A. (2012)
Auto-scaling Techniques for Elastic Applications in Cloud
Environments, Research EHU-KAT-IK, Department of
Computer Architecture and Technology, UPV/EHU.

Lynar, T.M., Herbert, R.D. and Chivers, W.J. (2013) ‘Reducing
energy consumption in distributed computing through
economic resource allocation’, International Journal of Grid
and Utility Computing, Vol. 4, No. 4, pp.231–241.

Lynar, T.M., Herbert, R.D., Chivers, S. and Chivers. W.J. (2011)
‘Resource allocation to conserve energy in distributed
computing’, International Journal of Grid and Utility
Computing, Vol. 2, No. 1, pp.1–10.

Martineau, M., McIntosh-Smith, S., Boulton, M. and Gaudin, W.
(2016) ‘An evaluation of emerging many-core parallel
programming models’, Proceedings of the 7th International
Workshop on Programming Models and Applications for
Multicores and Manycores, PMAM’16, New York, NY, USA,
ACM, pp.1–10.

Masood, W. and Schmidt, J.F. (2015) ‘Exploring autoregressive
integrated models for time synchronization in wireless sensor
networks’, Proceedings of the 2015 Workshop on Wireless of
the Students, by the Students, & for the Students, S3’15, New
York, NY, USA, ACM, pp.31–33.

Moore, L.R., Bean, K. and Ellahi, T. (2013) ‘Transforming reactive
auto-scaling into proactive auto-scaling’, Proceedings of the 3rd
International Workshop on Cloud Data and Platforms,
CloudDP’13, New York, NY, USA, ACM, pp.7–12.

Moreno-Vozmediano, R., Montero, R.S. and Llorente, I.M. (2012)
‘Iaas cloud architecture: From virtualized datacenters to
federated cloud infrastructures’, Computer, Vol. 45, No. 12,
pp.65–72.

Netto, M.A.S., Cardonha, C., Cunha, R.L.F. and Assuncao, M.D.
(2014) ‘Evaluating auto-scaling strategies for cloud computing
environments’, IEEE 22nd International Symposium on
Modelling, Analysis & Simulation of Computer and
Telecommunication Systems, MASCOTS 2014, Paris, France,
9–11 September, pp.187–196.

Nikravesh, A.Y., Ajila, S.A. and Lung, C.-H. (2015) ‘Towards an
autonomic auto-scaling prediction system for cloud resource
provisioning’, Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2015 IEEE/ACM 10th
International Symposium on, Florence, IEEE, pp.35–45.

Perez-Palacin, D., Mirandola, R. and Scoppetta, M. (2016)
‘Simulation of techniques to improve the utilization of cloud
elasticity in workload-aware adaptive software’, Companion
Publication for ACM/SPEC on International Conference on
Performance Engineering, ICPE’16 Companion, New York,
NY, USA, ACM, pp.51–56.

Raveendran, A., Bicer, T. and Agrawal, G. (2011) ‘A framework for
elastic execution of existing mpi programs’, Proceedings of
the 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and PhD Forum,
IPDPSW’11, Washington, DC, USA, IEEE Computer Society,
pp.940–947.

Rosa, B.A., Frederico, V.A., Bittencourt, L.F., Pereira, M.B.
and Hisatomi, K.S. (2014) ‘An experimental tool for
elasticity management through prediction mechanisms’,
Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, UCC’14,
Washington, DC, USA, IEEE Computer Society, pp.511–516.

Roy, N., Dubey, A. and Gokhale, A. (2011) ‘Efficient autoscaling in
the cloud using predictive models for workload forecasting’,
Cloud Computing (CLOUD), 2011 IEEE International
Conference on, Washington, DC, IEEE, pp.500–507.

Weidner, O., Atkinson, M., Barker, A. and Vicente, R.F. (2016)
‘Rethinking high performance computing platforms: Challenges,
opportunities and recommendations’, Proceedings of the
ACM International Workshop on Data-Intensive Distributed
Computing, DIDC’16, New York, NY, USA, ACM, pp.19–26.

Zomaya, A.Y. (1996) Parallel and Distributed Computing
Handbook, Vol. 718, McGraw-Hill, New York, USA.

