
Solving Datapath Issues
on Near-Data Accelerators

Omitted for blind review

Abstract. Leveraged by the advent of big data applications, many stud-
ies have been migrating accelerators closer and closer to the data in order
to improve efficiency and performance. The most prominent types are
classified as embedded Near-Data Accelerator (NDA) or Processor-in-
Memory (PIM) accelerators. However, the adoption of these accelerators
requires at least three novel mechanisms, since traditional approaches
are not suitable to tackle these issues: how to offload instructions from
the host to NDA, how to keep cache coherence, and how to deal with the
internal communication between different NDA units. In this work, we
present an efficient design to solve these challenges. Based on the hybrid
Host-Accelerator code, to provide fine-grain control, our design allows
transparent offloading of NDA instructions directly from a host proces-
sor. Moreover, our design proposes a data coherence protocol, which in-
cludes an inclusion-policy agnostic cache coherence mechanism to share
data between the host processor and the NDA units, transparently. The
proposed mechanism allows full exploitation of the experimented state-
of-the-art design, achieving a speedup of up to 14.6× compared to a
Advanced Vector Extensions (AVX) architecture on Polybench Suite,
using, on average, 82% of the total time for processing and only 18% for
the cache coherence and communication protocols.

Keywords: In-Memory Processing · Cache Coherence · Instruction Of-
floading · Vector Instructions · 3D-stacked memories.

1 Introduction

In the last years, the arising of big data workloads, machine learning algorithms,
and data-intensive applications have demanded different flavors of accelerators.
Meanwhile, trying to mitigate the memory wall effects widely increased by the
numerous accelerators present on modern embedded systems, 3D-stacking tech-
nology has been evolving and enabling improvements on memory bandwidth and
chip capacity. Both the requirements of data-intensive workloads and the emer-
gence of 3D-stacked memories have been leveraging the resurgence of Processor-
in-Memory (PIM) studies. Moreover, supported by the integration of logical and
memory layers, such as found in the Hybrid Memory Cube (HMC) [13] and High
Bandwidth Memory (HBM) [23], more sophisticated and efficient PIM designs
have emerged.

PIM techniques intend to mitigate the memory bottleneck by processing data
near to, or directly on main memory, which mainly avoids data movements, thus



2 Omitted for blind review

reducing energy and improving performance. Ideally, an efficient PIM architec-
ture must be able to take advantage of the internal bandwidth available on
3D-stacked memories, which can provide at least 320GB/s [13, 23]. Moreover,
the logic design must fit within the logic layer area and power constraints of 3D-
stacked memories [9, 17]. Past studies, such as [21, 15, 22], have analyzed how
different PIM logic designs exploit the huge bandwidth provided by 3D-stacked
memories, as well as how much area and power they require.

From those studies, it is depicted that the most suitable PIM logic designs
require a massive amount of simple Functional Units (FUs) to efficiently ben-
efit from the available bandwidth. Consequently, to achieve high performance
(TFLOPs), while still matching power and area budgets [9, 15], the PIM design
needs to move from typical processor’s front-end and sophisticated Instruction
Level Parallelism (ILP) and Thread Level Parallelism (TLP) hardware tech-
niques, leaving room for FUs and register files. Therefore, the adoption of FU-
centric and reduced logic approaches relies on fine-grain instruction offloading.

Although several works present solutions for the instruction-level offloading
issue [4, 14, 16, 7], they lack solving two inherent challenges that comes with this
approach: how data is kept coherent between host and PIM, and how data is kept
coherent between multiple computing units within 3D-stacked memory. The so-
lutions present in the literature demand specialized extra hardware while limit
the generality of cache memories [4], isolate memory address between differ-
ent processing elements and restrict the parallelism exploitation of 3D-stacked
memories [11], and do not support Translation Look-aside Buffer (TLB) and
virtual memory [7]. Moreover, the communication between different PIM units
is neglected in previous studies available in the literature.

The present work focuses on solving the aforementioned main issues to al-
low a transparent offloading of PIM instructions directly from the host processor
without incurring overhead to the Central Processing Unit (CPU). Furthermore,
our PIM architecture design proposes a data coherence protocol that includes
not only a mechanism to share data between the host processor and PIM units
transparently, but also among several in-memory functional units-based proces-
sors. Thus, our design addresses programmability and cache coherence issues to
reduce programmers’ effort in designing application to be executed in PIM archi-
tectures. Moreover, a complete explanation of how our mechanism handles both
the Host-PIM and PIM-PIM communication is shown. We compare the present
approach with the optimal oracle-based case, showing that our PIM approaches
to solving instruction offloading, data coherence, and communication can get
close to the optimal scenario.

This work is organized as follows: Section 2 highlights previous and state-
of-the art PIMs approaches while summarizes their mechanisms to support the
adoption of each design. Section 3 gives a brief overview of the case study. Our
approach is present on Section 4. The results are present on Section 5, and the
conclusions on Section 6.



Solving Datapath Issues on Near-Data Accelerators 3

2 The Road so Far

Although minimal changes in CPU may minimize the effort to programmers, it
opens up new challenges, such as deciding between host and PIM instructions,
how to keep coherence among PIM devices and host processor, and how to
manage communication involving both PIM units (PIM-PIM communication)
or CPUs (Host-PIM communication).

2.1 Offloading PIM instructions

Two main ways of performing code offloading are highlighted in the literature:
fine-grain offloading and coarse-grain offloading. In the former way, PIM instruc-
tions are seen as individual operations and issued one by one to fixed-function
PIM logic from CPU [4, 14, 16]. In the coarse-grain instruction offloading ap-
proach, an application can be seen as having an entire or partial PIM instruc-
tion kernel as presented in [5, 11]. Coarse-grain approaches often have portions
of code that should execute as PIM instructions surrounded with macros (like
PIM-begin and PIM-end as seen in [7, 11]). From the CPU side, when it fetches
a PIM instruction, it sends the instruction’s Program Counter (PC) to a free
PIM core, and the assigned core begins to execute starting from this given PC.
Later, when the PIM unit finishes its execution, the CPU is notified about its
completion [7, 11, 3, 4]. Thus, these ways of performing PIM instruction offload-
ing provide the illusion that PIM operations are executed as if they were host
processor instructions [4]. Considering that PIM instructions also perform load
and store operations, these instructions require some mechanism to perform ad-
dress translation. There are three common ways to treat this in state-of-art PIM
architectures. The first one is to keep the same virtual address mapping scheme
used by the CPU and Operating System (OS) [4]. Another approach is to have
split addressing spaces for each PIM unit [11], although it demands each PIM
instance to have its virtual address mapping components. The last way is to
utilize only physical addresses on PIM instructions [7], but it has some criti-
cal drawbacks such as memory protection, software compatibility,and address
mapping management schemes.

2.2 Keeping coherence

After the offloading handler addresses a given PIM instruction, it may have to
perform load/store operations and consequently have memory addresses shared
along others PIM instances or even CPUs. To cope with this data coherence
problem, some designs opt for not offer a solution in hardware, requiring the
programmer to explicit manage coherence or mark PIM data as non-cacheable
[3, 5, 4, 12]. In other approaches [7], the coherence is kept within the first data
cache level of each PIM core taking use of a MESI protocol directory inside the
Dynamic Random Access Memory (DRAM) logic layer. In this solution, coher-
ence stats are updated only after the PIM kernel’s execution: PIM cores send
a message to the main processor informing it all the accessed data addresses.



4 Omitted for blind review

The main memory directory is checked, and if there is a conflict, the PIM kernel
rolls back its changes, all cache lines used by the kernel are written back into
the main memory, and the PIM device restarts its execution. Other method-
ologies use protocols based on single-block-cache restriction policy [4], which
utilizes last level cache tags. To guarantee coherence, special PIM memory fence
instructions (pfence) must surround shared memory regions code. On [4], a spe-
cial module called PEI Managment Unit (PMU) maps the read and written
addresses by all PIM elements using a read-write lock mechanism and moni-
tors the cache blocks accesses issuing requests for back-invalidation (for writing
PEIs) or back-writeback (for reading PEIs). All PEI instructions access the TLB
as normal load/store instructions. Alternatively, some PIM designs put caches,
TLB and Memory Management Unit (MMU) within each memory vault to per-
form addressing translations [11]. In this case, cache coherence is maintained by
a three-step protocol: The Streaming Machine (SMT) that requested the instruc-
tion offloading pushes all memory update traffic from itself to memory before
it sends the offloading request. Second, the memory stack SMT invalidates its
private data cache. Third, memory stack SM sends all its modified data cache
lines to the SMT Graphic Processing Unit (GPU) that subsequently gets the
latest version of data from memory.

2.3 Managing communication

Each PIM exposes an interface to the host CPU and, due to the absence of a
standard model or even a protocol for this interface, most current works in the
field of PIM research adopt their models to implement and handle CPU-PIM and
PIM-PIM communication. Since PIM units are commonly seen by host CPU as
co-processors, Host-PIM communication is treated in the literature by taking use
the memory channel to pass instructions/commands from CPU to PIM units [11,
4, 7]. Some PIM approaches do not have communication among units. In these
cases, there is not PIM-PIM communication because they either have separated
memory chips and do not perform computation over external memory addresses
[11], or they have fixed address ranges without shared memory locations [16]. In
other works, where there is PIM-PIM communication, it is managed by MESI-
based modified protocols in a similar way which MultiProcessor System-on-Chip
(MPSoC) do [4].

3 A Near-Data Accelerator (NDA) architecture for a
case study

State-of-the-art NDA designs have been presented in the literature. The work
presented in [1] allows cache memory to compute binary logic operations, which
requires the offloading of instruction from the processor-host side, and also data
coherence treatments as the proposed mechanism can be implemented in any
cache level. The authors of [16] propose the use of the native PIM presented in
the HMC [13] to accelerate graph algorithms. The HMC is the first 3D-stacked



Solving Datapath Issues on Near-Data Accelerators 5

Listing 1.1: Hybrid Code Host-PIM Example

mov r10 , rdx

xor ecx , ecx

PIM_256B_LOAD_DWORD PIM_3_R256B_1 , pimword ptr [rsp + 1024]

PIM_256B_VPERM_DWORD PIM_3_R256B_1 , PIM_3_R256B_1 , PIM_3_R256B_0

PIM_256B_VADD_DWORD PIM_3_R256B_0 , PIM_3_R256B_0 , PIM_3_R256B_1

PIM_256B_STORE_DWORD pimword ptr [rsp + 1536] , PIM_3_R256B_0

mov eax , dword ptr [rsi + 4*rcx + 16640]

imul eax , r9d

add eax , dword ptr [rsp + 1536]

mov dword ptr [r10], eax

inc rcx

memory to specify atomic commands to perform read-update-write in-memory
operations on data using 16 byte operands. However, the HMC design does not
consider any solution for the instruction offloading and cache coherence issues.
Similarly, [19, 20] show PIM designs to exploit data-level parallelism by providing
vector processing units in memory, also relying on instruction offloading and
requiring data coherence mechanisms.

In a sequence of proposals, this work focuses on a design that provides high
compute bandwidth by augmenting existing CPU data-path with FUs placed in
the logic layer of the HMC [15]. As described in [15], the micro-architecture called
Reconfigurable Vector Unit (RVU) [19] meets power and area constraints given
by HMC while providing the maximum processing bandwidth when compared
to other recent 3D-stacked PIM proposals [8, 21, 10, 3]. The RVU architecture
consist of FU sets distributed along the 32 vaults within an HMC module, each
vault containing a register bank with 8x256 bytes, 32 multi-precision floating-
point/integer FU and a Finite State Machine (FSM). The RVU Instruction Set
Architecture (ISA) is a subset of Intel’s Advanced Vector Extensions (AVX)
that contains arithmetic, logic, data transfer, and data reordering operations.
As described in [15], most of the computing unit area is occupied by multi-
precision floating point FUs which make possible to achieve a peak compute
power of 8 TFLOPS.

The RVU ISA is based on operand size reconfiguration to create instructions
with variable vector width within a RVU instance, that is operands varying from
4 Bytes to 256 Bytes. However, it is also capable of inferring large vectors by
aggregating neighbor instances and create instructions ranging from 256 Bytes
to 8 kBytes [19]. Moreover, as RVU augments the CPU data-path, native host
instructions and PIM instructions are expected to happen in the same binary
code [2] and use the same address space as illustrated on Listing 1. Each RVU
instance can request a region of memory from another vault or even request an
entire register from a distinct instance using the internal logic-layer communi-
cation path.



6 Omitted for blind review

4 Mechanism

The goal of this paper is to provide an efficient implementation of host-NDA
interface, thus allowing the transparent utilization of 3D-stacked memory band-
width with the lowest possible performance overhead. Figure 1 illustrates the
proposed flow to overcome the challenges concerning instruction-level offloading,
data coherence, and the intercommunication model used inside the 3D-stacked
device, and the next sections will detail its purpose.

4.1 Instruction offloading

The instruction-level or fine-grain offloading is convenient for FU-centric accel-
erators, since the application execution flow can remain in the host CPU by
only including a dedicated ISA for accelerator’s operations. Here, we consider
an arbitrary ISA-extension for triggering NDA operations, and also for allow-
ing binaries to be composed of both host CPU and NDA instructions. Hence,
the host CPU has to fetch, decode and issue instructions transparently to the
near-memory logic without or with minimal timing overhead. In our model-
ing, we built the case study ISA upon the x86 ISA, and we use a two-step
decoding mechanism to perform fine-grain instruction offloading to NDA: host
CPU and NDA sides. Thus, modules present in any host CPU, such as TLB,
page walker and even host registers can be reused without incurring additional
hardware. For instance, memory access instructions, such as PIM LOAD and
PIM STORE, rely on the host address translation mechanism, which prevents
hardware duplication in NDA logic, keeping software compatibility and memory
protection. Thus, the host-side interface seamlessly supports register-to-register
and register-to-memory instructions in the near-memory logic, and also register-
to-register instructions between host CPU and NDA logic.

The first step to perform instruction offloading consists of decoding a NDA
instruction in the host CPU. Part of the instruction fields in the NDA ISA can
be used to read or write x86 registers, and to calculate the memory addresses
using any x86 addressing method. In the meantime, other instruction fields are
used to NDA-specific features, such as physical registers of NDA logic, operand
size, vector width and so on, which are encapsulated into the NDA machine for-
mat in the execution stage. In the host CPU pipeline, all NDA instructions are
seen as store instructions, which are issued to the Load-Store Queue (LSQ) unit.
The NDA Instruction Dispatcher unit illustrated in Figure 1 presents the mod-
ifications made in the LSQ to support the instruction-level offloading. Further,
the NDA Instruction Dispatcher unit is also responsible for violation checking
between native and NDA load/store requests. An exclusive offloading port con-
nects the LSQ to the host memory controller directly. The NDA instructions are
dispatched in a pipeline fashion at each CPU cycle, except for the memory in-
structions that need its data to be updated in the main memory and invalidated
in the cache memories to keep data coherent, which is detailed in Subsection 4.2.

As NDA instructions are sent as a regular packets to the memory system,
they are addressed by the destination NDA unit and an architecture-specific flag



Solving Datapath Issues on Near-Data Accelerators 7

HMC MODULE

NDA Instruction and 
Data Racing Manager

NDA Instruction  
Checker

H
O

ST
 

M
em

or
y 

C
on

tro
lle

r

Processor Core

Dispatch Execution CommitDecodeFetch

Cache 
Hierarchy Directory

NDA
Instructions

LSQ
NDA
Status
FLUSH
Operations

TLB

NDA 0

. . .
NDA 7 NDA 24

. . .
NDA 31

MEMORY VAULTS. . .

Full Duplex Fast Links

Fig. 1: Datapath for efficient utilization of NDA logic

is set in the packet to differ it from typical read and write requests. When the
packet arrives at the vault controller, the second step of the offloading mechanism
takes place on the memory side: the instruction fields are extracted from the
packet and decoded by the NDA FSM, where data will be finally be transferred
or modified. By using this methodology, we decouple NDA logic from the host
interface and, thus, the NDA logic can be easily extended without implying in
modifications either to the host CPU or the host-NDA interface.

4.2 Data coherence between NDA and host’s cache hierarchy

Cache coherence in near-data architectures must not only keep shared data be-
tween cache hierarchy and processors, but also between cache memories and main
memory with processing logic, since both NDA and host instructions may have
access to a shared memory, which is typically a DRAM. However, traditional
coherence mechanisms, e.g., MOESI, may not be enough to keep coherence in
NDA because such protocols will require intense traffic of snooping messages in
a narrower communication channel, which may be a source of bandwidth and
time overhead. To minimize the overhead, and to maintain coherence with a fine-
grain protocol, we delegate the offloading decision to the compiler, so that it can
minimize data sharing, and coherence mechanism proposed here invalidates only
conflicting memory region of the cache hierarchy.

The cache coherence data management mechanism proposed works as follows:
Before sending a memory access instruction, the LSQ unit emits a flush request of
the corresponding NDA memory operand size (ranging from 4 Bytes to 8 KBytes)
to the data cache memory port. The flush request is sent to the first level data
cache and then it is forwarded to the next cache level until it arrives the last
level cache, where the request is transmitted back to the LSQ unit. At each
cache level, a specific hardware module interprets the flush request and triggers
lookups for cache blocks within the address range of the NDA memory access
instruction that originated the flush request. If there are cache blocks affected,



8 Omitted for blind review

they will either cause a writeback or an invalidate command that is enqueued
in the write-buffer and finally, the flush request is enqueued. It is important
to notice that the proposed mechanism maintain coherence between a single-
core host and NDA. However, for multi-core host CPUs emitting instructions to
NDAs, we need an existing cache coherence, such as MOESI, to be in charge of
keeping data shared coherent between the hosts.

4.3 Data coherence among NDA units within a memory device

Since host CPU and NDA instructions share the same address space, it is likely
to occur a data race within the 3D-stacked memory. Even excluding the interfer-
ence of requests from the host CPU, a code region that triggers multiple NDA
instances is prone to have a data race between requests from distinct instances.
Leaving it unhandled can potentially cause data hazards, incorrect results, and
unpredictable application behavior. For this reason, a data racing protocol is
required to keep requests ordered and synchronized.

We consider a crossbar switching tree as an implementation of the intercon-
nection network used in the logic layer of a 3D-stacked memory. This network
is not only used for a request coming from the host CPU, but also requests
made from one vault to another, which are called here as inter-vault requests.
On top of that, we implemented a protocol for solving coherence and data racing
of host-NDA and NDA-NDA communication using an acquire-release transac-
tion protocol. To do so, we define three commands to use within the inter-vault
communication subsystem: memory-write and memory-read and register-read
requests. These requests can be used with either acquire or release flag and
carry a sequence number related to the original NDA instruction.

Figure 1 illustrates the distribution of the NDA Instruction and Data Racing
Manager, which allows the PIM architecture to synchronize and keep the order
of memory requests as soon as the NDA instruction arrives in the NDA logic. In
short, when a NDA instruction is dispatched from the LSQ unit, it crosses the
HMC serial link and arrives at the Data Racing Manager. In this module, the
acquire memory-read or acquire memory-write requests are generated for mem-
ory access instruction or acquire register-read requests for modifying instructions
involving registers from different vaults. Finally, when the NDA instruction is
decoded in the NDA FSM, its LSQ unit generates a memory-write, memory-
read or register-read request with a release flag. In the target vault controller,
the release request will either unlock the register-read instruction in the NDA’s
Instruction Queue or remove a blocking request from the memory buffer. Thus,
the NDA execution flow can continue without any data hazard.

5 Experimental Setup and Results

In this section, we present the methodology used to evaluate our mechanism and
results.



Solving Datapath Issues on Near-Data Accelerators 9

Table 1: Baseline and Design system configuration.

Intel Skylake Microarchitecture
4GHz; AVX-512 Instruction Set Capable; L3 Cache 16MB;
8GB HMC; 4 Memory Channels;

HMC
HMC version 2.0 specification;
Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer
32 Vaults - 16 Banks per Vault; 4 high speed Serial Links;

RVU
1GHz; 32 Independent Functional Units; Integer and Floating-Point Capable;
Vectorial Operations up to 256Bytes per Functional Units;
32 Independent Register Bank of 8x256Bytes each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units;
Interconnection between vaults: 5 cycles latency;

5.1 Evaluation Setup

In order to accurate our simulation, we have implemented all the mechanisms
mentioned in Section 4 on the NDA framework presented in [20], which comprises
a GEM5-based simulator [6], and an automation compiler tool for NDA software
development [2, 20]. Further, we use a subset of the PolyBench benchmark suite
to evaluate the impact of the proposed architecture in most of scientific kernel
applications [18]. Table 1 summarizes the setup simulated.

5.2 Performance Results

Figure 2 presents the execution time results for small kernels, which is decom-
posed into three regions. The bottom blue region represents the time spent only
computing the kernel within the in-memory logic. The red region highlighted in
the middle depicts the cost of inter-vault communication, while the top green
region represents the cost to keep cache coherence.

It is possible to notice in the vecsum kernel that more than 70% of the
time is spent in cache coherence and internal communication, while only 30 %
of the time is actually used for processing data. Although most of the vecsum
kernel is executed in NDA, hence the data remains in the memory device during
all execution time and no hits (writeback or clean eviction) should be seen in
cache memories, there is a fixed cost for lookup operations to prevent data
inconsistency. Regarding the matrix-multiplication and dot-product kernels in
Figure 2, the impact of flush operations is amortized by the lower ratio of NDA
memory access per NDA modification instructions.

Since the flush operation generally triggers lookups to more than one cache
block addressed by a NDA instruction, the overall latency will depend on each
cache-level lookup latency. Also, for each flush request dispatched from the LSQ,
all cache levels will receive the request forward propagation, but it is executed
sequentially from the first-level to last-level cache. Only improvements in lookup
time or reduced cache hierarchy would impact in the performance of flush opera-
tions. On the other hand, inter-vault communication penalty generally has little
impact on the overall performance. For the transposed matrix-multiplication



10 Omitted for blind review

0

0.2

0.4

0.6

0.8

1

VecSum 1MB Matrix Vector
Multiplication

2048x2048

Dot Product 2048 Transposed Matrix
Multiplication

2048x2048N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

RVU Intervault Communication Data Coherence

Fig. 2: Execution time of common kernels to illustrate the costs of Cache Coherence
and Inter-vault communication

kernel, it is possible to see the effect of a great number of register-read and
mem-read to different vaults inherent to the application loop.

Regarding flush operations and inter-vault communication as costs that could
be avoided, in Figure 3 it is shown the overall performance improvement of an
ideal NDA (no flush and no inter-vault communication), and the performance
penalty employing the work’s proposal in some benchmarks of Polybench Suite.
In general, the present mechanism can achieve speed-up improvements between
2.5× and 14.6×, while using 82% of the execution time for computation, and
hence only 18% for cache coherence and inter-vault communications. Therefore,
our proposal provides a competitive advantage in terms of speedup in compar-
ison to other HMC-instruction-based NDA setups. For instance, the proposal
presented in [16] relies on uncacheable data region, hence no hardware cost is
introduced. However, it comes with a cost in how much performance can be
extracted when deciding if a code portion must be executed in the host core
or in NDA units. Besides, the speculative approach proposed in [7] has only
5% of performance penalty compared to an ideal NDA, but the performance
can profoundly degrade if rollbacks are frequently made, which will depend on

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ex
ec

u
ti

o
n

 T
im

e 
-

N
o

rm
al

iz
ed

 t
o

 
A

V
X

5
1

2

RVU Data Coherence and Communication Performance Penalty

Fig. 3: Execution time of PolyBench normalized to AVX-512



Solving Datapath Issues on Near-Data Accelerators 11

the application behavior. Also, another similar work [4] advocates locality-aware
NDA execution to avoid flush operations and off-chip communication. However,
they do not consider that large vectors in NDA can amortize the cost of cache
coherence mechanism even if, eventually, the host CPU has to process scalar
operands on the same data region.

6 Conclusions and Future Work

In this paper, we presented an efficient approach to solve both offloading of
instructions, keep data coherence and manage communication in PIM architec-
tures. Based on the hybrid Host-PIM style, our mechanism transparently allows
offloading of PIM instructions directly from a host processor without incurring
overheads. The proposed data coherence protocol offers programmability and
cache coherence resources to reduce programmers and compilers’ effort in de-
signing applications to be executed in PIM architectures. This work presents
an acquire-release communication protocol to cope with distributed PIM units
requirements. The experiments show that our mechanism can accelerate appli-
cations up to 14.6× compared to a AVX architecture, while the penalty due to
cache coherence and communication represents an average percentage of 18%
over the ideal PIM. In future works, we expect to analyze a broader range of
applications using our proposed data-path.

References

1. Aga, S., Jeloka, S., Subramaniyan, A., Narayanasamy, S., Blaauw, D., Das, R.:
Compute caches. In: 2017 IEEE Int. Symp. on High Performance Computer Ar-
chitecture (HPCA). pp. 481–492 (Feb 2017)

2. Ahmed, H., Santos, P.C., de Lima, J.P.C., de Moura, R.F., Alves, M.A., Beck,
A., Carro, L.: A compiler for automatic selection of suitable processing-in-memory
instructions. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE) (2019)

3. Ahn, J., Hong, S., Yoo, S., Mutlu, O., Choi, K.: A scalable processing-in-memory
accelerator for parallel graph processing. In: Int. Symp. on Computer Architecture
(2015)

4. Ahn, J., Yoo, S., Mutlu, O., Choi, K.: Pim-enabled instructions: a low-overhead,
locality-aware processing-in-memory architecture. In: Int. Symp. on Computer Ar-
chitecture (ISCA). pp. 336–348. IEEE (2015)

5. Akin, B., Franchetti, F., Hoe, J.C.: Data reorganization in memory using 3d-
stacked dram. In: ACM SIGARCH Computer Architecture News. vol. 43, pp.
131–143. ACM (2015)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hest-
ness, J., Hower, D.R., Krishna, T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Computer Architecture News 39 (2011)

7. Boroumand, A., Ghose, S., Lucia, B., Hsieh, K., Malladi, K., Zheng, H., Mutlu,
O.: LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory.
IEEE Computer Architecture Letters (2016)



12 Omitted for blind review

8. Drumond, M., Daglis, A., Mirzadeh, N., Ustiugov, D., Picorel, J., Falsafi, B., Grot,
B., Pnevmatikatos, D.: The mondrian data engine. In: Int. Symp. on Computer
Architecture. ACM (2017)

9. Eckert, Y., Jayasena, N., Loh, G.H.: Thermal feasibility of die-stacked processing
in memory. In: 2nd Workshop on Near-Data Processing (WoNDP) (2014)

10. Gao, M., Kozyrakis, C.: Hrl: efficient and flexible reconfigurable logic for near-
data processing. In: Int. Symp. High Performance Computer Architecture (HPCA)
(2016)

11. Hsieh, K., Ebrahimi, E., Kim, G., Chatterjee, N., O’Connor, M., Vijaykumar, N.,
Mutlu, O., Keckler, S.W.: Transparent offloading and mapping (tom): Enabling
programmer-transparent near-data processing in gpu systems. ACM SIGARCH
Computer Architecture News 44(3), 204–216 (2016)

12. Hsieh, K., Khan, S., Vijaykumar, N., et al.: Accelerating pointer chasing in 3D-
stacked memory: Challenges, mechanisms, evaluation. In: Int. Conf. on Computer
Design (ICCD) (2016)

13. Hybrid Memory Cube Consortium: Hybrid memory cube specification rev. 2.0
(2013), http://www.hybridmemorycube.org/

14. Lee, J.H., Sim, J., Kim, H.: Bssync: Processing near memory for machine learning
workloads with bounded staleness consistency models. In: Int. Conf. on Parallel
Architecture and Compilation (PACT). pp. 241–252. IEEE (2015)

15. de Lima, J.P.C., Santos, P.C., Alves, M.A., Beck, A., Carro, L.: Design space
exploration for pim architectures in 3d-stacked memories. In: Proceedings of the
15th ACM International Conference on Computing Frontiers. pp. 113–120. ACM
(2018)

16. Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., Kim, H.: Graphpim: Enabling
instruction-level pim offloading in graph computing frameworks. In: Int. Symp.
High Performance Computer Architecture (HPCA). pp. 457–468. IEEE (2017)

17. Pawlowski, J.T.: Hybrid memory cube (hmc). In: Hot Chips 23 Symposium (HCS).
IEEE (2011)

18. Pouchet, L.N.: Polybench: The polyhedral benchmark suite. URL: http://www.
cs. ucla. edu/pouchet/software/polybench (2012)

19. Santos, P.C., Oliveira, G.F., Tomé, D.G., Alves, M.A., Almeida, E.C., Carro, L.:
Operand size reconfiguration for big data processing in memory. In: Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE) (2017)

20. Santos, P.C., de Lima, J.P.C., de Moura, R.F., Ahmed, H., Alves, M.A., Beck,
A., Carro, L.: Exploring iot platform with technologically agnostic processing-in-
memory framework. In: Proceedings of the Workshop on INTelligent Embedded
Systems Architectures and Applications. pp. 1–6. ACM (2018)

21. Scrbak, M., Islam, M., Kavi, K.M., Ignatowski, M., Jayasena, N.: Exploring the
processing-in-memory design space. Journal of Systems Architecture 75, 59–67
(2017)

22. Singh, G., Chelini, L., Corda, S., Awan, A.J., Stuijk, S., Jordans, R., Corporaal, H.,
Boonstra, A.J.: A review of near-memory computing architectures: Opportunities
and challenges. In: Euromicro Conf. on Digital System Design (DSD) (2018)

23. Standard JEDEC: High Bandwidth Memory (HBM) DRAM. JESD235 (2013)


