
SiNUCA: A Validated Micro-Architecture Simulator

Marco A. Z. Alves, Matthias Diener,
Francis B. Moreira, Philippe O. A. Navaux

Informatics Institute – Federal University of Rio Grande do Sul

Email: {mazalves, mdiener, fbmoreira, navaux}@inf.ufrgs.br

Carlos Villavieja
Google

Email: villavieja@google.com

Abstract—In order to observe and understand the architectural be-
havior of applications and evaluate new techniques, computer architects
often use simulation tools. Several cycle-accurate simulators have been
proposed to simulate the operation of the processor on the micro-
architectural level. However, an important step before adopting a simula-
tor is its validation, in order to determine how accurate the simulator is
compared to a real machine. This validation step is often neglected with
the argument that only the industry possesses the implementation details
of the architectural components. The lack of publicly available micro-
benchmarks that are capable of providing insights about the processor
implementation is another barrier. In this paper, we present the validation
of a new cycle-accurate, trace-driven simulator, SiNUCA. To perform the
validation, we introduce a new set of micro-benchmarks to evaluate the
performance of architectural components. SiNUCA provides a controlled
environment to simulate the micro-architecture inside the cores, the cache
memory sub-system with multi-banked caches, a NoC interconnection and
a detailed memory controller. Using our micro-benchmarks, we present
a simulation validation comparing the performance of real Core 2 Duo
and Sandy-Bridge processors, achieving an average performance error
of less than 9%.

I. INTRODUCTION

Research on high-performance computing architectures depends

on accurate and flexible simulation to enable the development of

future generations of computer systems. Such research depends on

simulators that provide detailed models of each subsystem, such

as pipeline stages, functional units, caches, memory controllers and

interconnections. Few existing public micro-architecture simulators

have been verified for single core architectures [1]. However, with the

latest advances in Chip Multiprocessor (CMP), Simultaneous Multi-

Threading (SMT), branch prediction, memory disambiguation pre-

diction [2], Non-Uniform Cache Architecture (NUCA) [3], Network-

on-Chip (NoC) [4] and other mechanisms, the validation process of

the simulators has not been continued. For multi-core architectures,

mechanisms such as cache coherence, interconnection networks and

memory controllers affect performance and increases the difficulty of

validation. The use of these shared resources and their performance

impact can vary significantly, depending on their implementation.

When validating a simulator, errors simulating full applications

with mixed operations can lead to misleading conclusions, since

errors from different components can cancel each other out. For this

reason, micro-benchmarks that stress different hardware components

independently can be used to correlate the implementation with real

processors. The micro-benchmarks must be implemented in such a

way that the performance of each component is evaluated separately,

in order to isolate its impact. Furthermore, the operation of specific

components in the processor is not published for intellectual property

reasons. As a possible way to observe the behavior at a finer

granularity, micro-benchmarks can be used as well.

For these reasons, writing an accurate and validated simulator

for modern micro-architectures is a difficult task, and few pub-

licly available simulators are validated for modern architectures.

With these problems in mind, we developed the Simulator of Non-
Uniform Cache Architectures (SiNUCA), a performance validated,

trace-driven, cycle accurate simulator for the x86 architecture. The

simulator is capable of running single and multi-threaded applications

and multiple workloads with a high level of detail of all the pipeline

components. Additionally, we implemented a large set of micro-

benchmarks to correlate the simulator results (performance and other

statistics) with two existing x86 platforms. Due to its performance

validation, SiNUCA enables simulation of new micro-architecture

features with a high fidelity.

SiNUCA has the following main features:

Detailed Processor Model: SiNUCA implements architectural com-

ponents, such as processor pipeline, memory and interconnections

with a high level of detail. We also model parallel architectures

such as multi-core and multi-processor systems. We used publicly

available information for the implementation of the simulator. Where

this information was not available, we used micro-benchmarks in

order to observe the behavior of a real machine.

Validated with High Accuracy: We introduce a set of micro-

benchmarks that cover the main performance relevant components:

the control unit, dependency handling, execution units, as well

as memory load and store operations on different memory levels.

SiNUCA is validated with these micro-benchmarks in addition to real

workloads. The simulation statistics are compared to real machines.

The micro-benchmarks have an average difference of 9% comparing

the Instructions per Cycle (IPC) when simulating machines for the

Core 2 Duo and Sandy Bridge architectures.

Support for Emerging Techniques: SiNUCA is able to model

several state-of-the-art technologies, such as NUCA, Non-Uniform

Memory Access (NUMA), NoC and DDR3 memory controllers.

Besides traditional micro-architecture enhancements such as cache

pre-fetchers, branch predictors and others, the support for new

technologies is important for accurate simulation of future processors.

Flexibility: Another important feature to support computer architec-

ture research is the ease of implementing or extending features. This

is enabled by SiNUCA with a modular architecture, which provides

a direct access to the operational details of all the components. Other

simulators are limited by metalanguages that do not expose all the

functionalities of the micro-architecture, making it more difficult to

model new mechanisms and modify existing ones.

II. RELATED WORK

In this section, we analyze related computer architecture simulators

and compare them to our proposed simulator.

Desikan et al. [1] validate sim-alpha, a simulator based on the

sim-out-order version of SimpleScalar [5]. In this work, the authors

aim to simulate the Alpha 21264 processor, using all available

documentation. They use micro-benchmarks in order to scrutinize

every aspect of the architecture, and are able to achieve an average

error of 2% for a set of micro-benchmarks, and an error of 18% for

the SPEC-CPU2000 applications. The authors identify the memory

model as the main source of errors. They show that commonly used

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE

DOI 10.1109/HPCC-CSS-ICESS.2015.166

605

simulators, such as SimpleScalar, might contain modeling errors and

become less reliable to test certain new features. We use a similar

validation process for SiNUCA, making separate evaluations for

specific components inside the processor by using micro-benchmarks.

We extend the control and memory micro-benchmarks to evaluate

modern branch predictors and multiple cache levels.

Virtutech SimICS [6] is a full-system, functional simulator which

measures execution time based on the number of instructions ex-

ecuted multiplied by a fixed IPC, and the number of stall cycles

caused by the latency of all components. In Weaver et al. [7], the

SESC simulator [8] is compared to Dynamic Binary Instrumentation

(DBI) using QEMU [9]. The authors show that in general, cycle-

accurate simulators generate inaccurate results over a long execution

time, due to lack of correctness in architectural details. They are able

to obtain similar results in an order of magnitude shorter time with

DBI. The paper also lists the flaws in cycle-accurate simulators. They

cite speed, obscurity, source code forks, generalization, validation,

documentation and lack of operating system influence as the major

factors when considering the use of a simulator. Regarding these

issues, SiNUCA solves several issues with code modularity, use of

traced instructions and the validation.

Gem5 [10] is a combination of two simulators: M5 [11] and the

General Execution-driven Multiprocessor Simulator (GEMS) [12].

The validation of the Gem5, modeling a simple embedded system

[13], shows that errors can vary from 0.5% to 16% for the applications

from the SPLASH-2 and ALPBench suites. However, for small

synthetic benchmarks with tiny input sizes, the error varies from 3.7%

to 35.9%. The authors conclude that the Dynamic Random Access

Memory (DRAM) model is inaccurate.

PTLsim [14] is a cycle accurate, full-system x86-64 microproces-

sor simulator and virtual machine. It is integrated with the Xen hyper-

visor in order to provide full-system capabilities. Multi2Sim [15] is

an event-driven simulator based on the premise of simulating multi-

threaded systems. COTSon [16] is a simulator developed to provide

fast and accurate evaluation of current and future computing systems,

covering the full software stack and complete hardware models.

Similar to SimICS, COTSon also abstracts processor microarchi-

tecture details, prohibiting development of novelty at this level.

MARSSx86 [17] is a cycle-accurate simulator based on PTLSim.

Although it simulates all architectural details, it does not ensure

accuracy, as can be seen in their comparison with the SPEC-CPU2006

workloads, where errors of up to 60% were obtained, with an average

error of 21%.

Table I summarizes the main characteristics of a large set of well-

known computer architecture simulators. Full-system simulation en-

TABLE I
COMPARISON OF COMPUTER ARCHITECTURE SIMULATORS.

Full- Micro- Extension NoC NUCA Memory
Name system arch. flexibility model support controller

SimAlpha No Yes High No No No
SimICS Yes No Low No No No
SESC No Yes High Detailed Yes Extension
GEMS No Yes Low Simple Yes No
M5 Yes Yes High Simple Yes No
Gem5 Yes Yes Low Simple Yes No
PTLsim Yes Yes High No No Extension
Multi2Sim No Yes High Detailed Yes No
COTSon Yes No Low Detailed Yes No
MARSSx86 Yes Yes High Detailed No No

SiNUCA No Yes High Detailed Yes Detailed

ables processor designers to evaluate OS improvements or its impact

on the final performance. However, OS simulation can introduce noise

during the evaluations, requiring several simulation repetitions (higher

simulation time) in order to obtain reliable results with a reduced

OS influence. Detailed micro-architectural simulation is required to

evaluate most of the state-of-the-art component proposals.

We consider that SimICS, GEMS, Gem5 and COTSon are not easy

to extend because they have private source code, need metalanguages

to modify the architecture or require modifications of multiple simula-

tion levels in order to perform micro-architectural changes. Regarding

NoC modeling, different detail levels can be observed among the

simulators. SimAlpha, SimICS and PTLsim do not natively support it.

GEMS, M5 and Gem5 model only the interconnection latency with-

out modeling traffic contention. Considering NUCA, we classified

the simulators as having support if they model at least multi-banked

caches (static NUCA [3]).

The memory controller is becoming more important in modern

processors because of its integration inside the processor chip. If a

simulator only simulates a fixed latency for every DRAM request, we

classify it as not capable of modeling a memory controller. Although

SESC and PTLsim do not support memory controller modeling

natively, extensions were proposed that overcome this deficiency.

III. THE SINUCA SIMULATOR

We developed SiNUCA, a trace-driven simulator, which executes

traces generated on a real machine with a real workload without the

influence from the Operating System (OS) or other processes. The

traces are simulated in a cycle-accurate way, where each component

is modeled to execute its operations on a clock cycle basis. SiNUCA

currently focuses on the x86 32 and x86 64 architectures, but

extending support for other Instruction Set Architectures (ISAs) is

a simple task.

A. System Model

The main components of SiNUCA are illustrated in Figure 1. The

description of the components is presented below:
Memory Package: Every memory operation inside the simulator is

encapsulated within this component.

Opcode Package: The instructions inside the simulator trace and

front-end are encapsulated within this component.

MicroOp Package: After decoding the Opcode Package, the micro-

operations are encapsulated within this component.

Token: Every communication between two memory components,

such as cache memories and memory controllers, needs to request

a token from the final package destination before the communication

starts. Tokens avoid deadlocks during package transfers that require

more than one hop to reach their final destination.

Processor: This component is responsible for executing the Opcodes.

It consists of the fetch, decode, rename, dispatch, execute and commit

stages. Currently, an Out-of-Order (OoO) processor is modeled. The

processor consists of 6 main stages, each stage can be configured to

take multiple cycles to complete. Although the processor could be

simulated with fewer stages, we implemented these stages separately

in order to increase the flexibility and ease simulator extensions.

Branch Predictor: It is responsible for implementing any branch

predictor mechanism with its Branch Target Buffer (BTB) and other

structures. It returns to the processor if the branch was predicted

correctly or not, together with the information about the stage in

which the branch will be solved. Thus, the fetch stage will stall

until the mispredicted branch reaches the informed stage. During

each prediction, the prediction correctness information is also updated

606

Router 0

D-Cache

TokensMSHR

Prefetcher

Memory Controller (DRAM)

Memory
Channel

Memory
Channel

Network
Controller

Directory

Network
Controller

Directory

Processor (Core 0)

Branch Predictor

Rename

RAT

ROB

Dispatch

Uop

Execution

ALU MUL DIV

FALU FMUL FDIV

Load Store

CommitDecode

Uop

Fetch

Op

MOB

Op

Mem
Mem

Mem

BTB

Mem

Memory
Package

Op

Opcode
Package

Uop

MicroOp
Package

Connections
without latency

Connections
with latency

<Name>

Real
component

<Name>

Virtual
component

I-Cache

TokensMSHR

Prefetcher

Network
Controller

Directory

L2-Cache

TokensMSHR

Prefetcher

Router 1

Network
Controller

Mem Mem

Mem

Memory
Disambiguation

Tokens

Fig. 1. SiNUCA architecture with its main components and connections,
modeling an Intel Core 2 Duo architecture.

inside the predictor structures. Currently, the Per-address Adaptive

branch prediction using per-Set PHT (PAs), Global Adaptive branch

prediction using per-Set PHT (GAs), Per-address Adaptive branch

prediction using one Global PHT (PAg) and Global Adaptive branch

prediction using one Global PHT (GAg) branch predictor mecha-

nisms are available in the simulator.

Cache Memory: This component is responsible for modeling instruc-

tion and data caches, both single and multi-banked models (static

NUCA), implementing a Miss-Status Handling Registers (MSHR)

internally per bank. This component only stores the tag array of the

cache, reducing the memory usage and the trace size.

Pre-fetcher: The memory packages serviced by the cache memory

are sent to the pre-fetcher, so that the memory addresses required by

the application in the future can be predicted and fetched. Currently,

a stride pre-fetcher and a stream pre-fetcher can be simulated.

Memory Controller: This component implements the memory con-

troller, formed by multiple channels, each channel with multiple

banks. A memory request that misses in all the cache levels will be

sent to this component, which will schedule the request to the memory

banks. The memory controllers also support NUMA modeling.

Memory Channel: Inside the memory controller, multiple memory

channels can be instantiated. Each channel may be connected to one

or more banks, each bank with its own read and write buffers.

Router: This component models the contention and delays imposed

by the interconnections. It implements a general NoC router that

automatically delivers packages using the routing information inside

each package.

Network Controller: This controller is used to generate a commu-

nication graph with the routes available in the modeled architecture.

All packages that need to be transmitted have a pointer to the routing

information contained in the routing table. The routing information

describes which path to take for each intermediary component

(routing input/output ports).

Directory: This component models the MOESI cache coherence

protocol, which is accessed directly by the caches for every memory

operation. It is responsible for creating locks on cache lines to control

concurrent operations, to change the cache line status (for example,

after writes or when propagating invalidations), to generate write-

backs and to inform the caches about hits or misses. During read

requests, the directory creates a read lock to that memory address,

thus only read accesses can be provided to that address in any cache

in the system. During write operations, the directory locks the cache

line. In this way, no other operation can be performed by other caches

on the same address until the lock is released.

The network controller and the directory are virtual components,

which model lookup tables but do not generate any latency on

accesses to them. All other components include a detailed implemen-

tation and the connections between them generate latency operations

when communicating with other components.

IV. MICRO-BENCHMARKS

Many architectural details of modern processors are not publicly

available. For this reason, micro-benchmarks are needed to evaluate

and estimate the behavior of the processor components. We developed

a suite of micro-benchmarks to isolate and validate specific parts

of SiNUCA. These benchmarks are presented in this section. Our

micro-benchmarks are inspired by the SimAlpha validation [1].

Four categories of benchmarks are defined: Control, Dependency,

Execution and Memory. These categories stress different stages of

the pipeline and evaluate different components separately. Table II

presents the micro-architecture details that each benchmark stresses.

1) Control benchmarks are designed to stress the execution flow.

Control Conditional implements a simple if-then-else construct in

a loop that is repeatedly executed, and alternates between taking and

not taking the conditional branch.

Control Switch tests indirect jumps with a switch construct formed

by 10 case statements within a loop. Each case statement is taken

n/10 times on consecutive loop iterations before moving to the next

case statement, where n is the total number of repetitions of the loop.

Control Complex mixes if-else and switch constructs in order to

create a hard to predict branch behavior.

Control Random implements an if-then-else construct in a loop that

is repeatedly executed. For every iteration, a Linear Feedback Shift

Register function decides whether the conditional branch is taken.

Control Small BBL evaluates the number of simultaneous in-flight

branches inside the processor by executing a loop with only the

control variable being incremented inside the loop.

2) Dependency benchmarks stress the forwarding of dependencies

between instructions. They evaluate dependency chains of 1–6 in-

structions. Each instruction waits for the execution of the previous

one due to the dependency, evaluating the data forwarding time.

3) Execution benchmarks stress the functional units: int-add, int-
multiply, int-division, fp-add, fp-multiply, and fp-division. All

execution benchmarks execute 32 independent operations inside a

loop, with a low number of memory operations, control hazards and

data dependencies, allowing a close-to-ideal throughput.

607

TABLE II
MICRO-BENCHMARKS LIST AND MICRO-ARCHITECTURAL DETAILS STRESSED BY EACH BENCHMARK.

C
o

m
p

le
x

C
o

n
d

iti
o

n
a

l
R

a
n
d
o
m

S
m

a
ll_

b
b

l
S

w
itc

h
C

h
a
in

-1
C

h
a
in

-2
C

h
a
in

-3
C

h
a
in

-4
C

h
a
in

-5
C

h
a
in

-6
F

P
-a

d
d

F
P

-d
iv

F
P

-m
u
l

IN
T

-a
d
d

IN
T

-d
iv

IN
T

-m
u
l

0
0

0
1

6
kb

0
0

0
3

2
kb

0
0

0
6

4
kb

0
0

1
2

8
kb

0
0

2
5

6
kb

0
0

5
1

2
kb

0
1

0
2

4
kb

0
2

0
4

8
kb

0
4

0
9

6
kb

0
8

1
9

2
kb

1
6

3
8

4
kb

3
2

7
6

8
kb

0
0

0
1

6
kb

0
0

0
3

2
kb

0
0

0
6

4
kb

0
0

1
2

8
kb

0
0

2
5

6
kb

0
0

5
1

2
kb

0
1

0
2

4
kb

0
2

0
4

8
kb

0
4

0
9

6
kb

0
8

1
9

2
kb

1
6

3
8

4
kb

3
2

7
6

8
kb

0
0

0
1

6
kb

0
0

0
3

2
kb

0
0

0
6

4
kb

0
0

1
2

8
kb

0
0

2
5

6
kb

0
0

5
1

2
kb

0
1

0
2

4
kb

0
2

0
4

8
kb

0
4

0
9

6
kb

0
8

1
9

2
kb

1
6

3
8

4
kb

3
2

7
6

8
kb

Branch Predictor � � � � �
Branch Miss Penalty �
In-flight Branches �
Register File � � � � � �
Functional Units � � � � � �
L1 Cache � � � � � �
L2 Cache � � � � � � � � �
LLC � � � � � � � � � � � � � � � � � �
DRAM � � �
Prefetcher �

Mem. Store Independent

C
ha

ra
ct

er
is

tic

Control Dependency Execution Mem. Load Dependent Mem. Load Independent

4) Memory benchmarks stress the cache and memory hierarchy.

Load Dependent executes a loop that walks a linked list, waiting

for each load to complete before starting the next. Twelve different

linked list sizes are used in the evaluation.

Load Independent repeatedly executes 32 parallel independent loads

from an array and sumps up their values in a scalar variable. Twelve

array sizes were evaluated in order to stress different cache levels.

Store Independent repeatedly performs 32 parallel independent

stores of a fixed scalar, iterating over all the positions of an array. The

same twelve array sizes as for the load independent are evaluated.

V. EVALUATION

To evaluate and validate SiNUCA, we performed extensive ex-

periments with a large set of benchmarks. This section presents the

methodology of the experiments, validation results and a discussion

of the differences between the simulator and the real machine.

A. Evaluation Methodology

In order to reduce the influence from the operating system, the

experiments in the real machine were repeated 100 times. For each

execution, we set a static affinity between the thread and the processor

core to reduce the overhead of migration. We equalized the micro-

benchmarks execution time to 3 seconds on the real machine. This

ensures that the amount of work performed is significant, while

keeping the simulation time reasonable for the full execution. To

obtain the performance counters (cycles and instructions), we used

the perf tool included in Linux.

TABLE III
PARAMETERS TO MODEL THE CORE 2 DUO PROCESSOR.

Processor Cores: 2 cores @ 1.8 GHz, 65 nm; 4-wide Out-of-Order;
16 B fetch block size; 1 branch per fetch; 8 parallel in-flight branches;
12 stages (2-fetch, 2-decode, 2-rename, 2-dispatch, 2-commit stages);
18-entry fetch buffer, 24-entry decode buffer; 96-entry ROB;
MOB entries: 24-read, 16-write; 1-load and 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-4-26 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-5 cycle);
Branch Predictor: 4 K-entry 4-way set-assoc., LRU policy BTB;
Two-Level PAs 2-bits; 16 K-entry PBHT; 128 lines and 1024 sets SPHT;
L1 Data + Inst. Cache: 32 KB, 8-way, 64 B line size; LRU policy; 1-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;
L2 Cache: Shared 2 MB; 8-way, 64 B line size; LRU policy; 4-cycle;
MOESI coherence protocol; MSHR: 2-request, 6-write-back, 2-prefetch;
Stream prefetch: 2-degree, 16-dist., 64-streams;
Memory Controller: Off-chip DRAM controller; 2-channels, 4 burst length;
DDR2 667 MHz; 2.8 core-to-bus frequency ratio; 8 banks, 1 KB row buffer;
Open-row first policy; 4-CAS, 4-RP, 4-RCD and 30-RAS cycles;

B. Real Machine and Simulation Parameters

Table III shows the parameters used to model the Intel Core 2 Duo

(Conroe microarchitecture - model E6300) [18]). Table IV presents

the parameters from Intel Xeon (Sandy Bridge microarchitecture -

model Xeon E5-2650) [19] architectures inside SiNUCA. The tables

show parameters of the execution cores, branch predictors, cache

memories and pre-fetchers, as well as the memory controllers.

C. Micro-Benchmark Results

Figure 2 presents the comparison in terms of Instructions per Cycle

(IPC) for the micro-benchmarks running on the real Core 2 Duo (real)

and with SiNUCA (sim). For Core 2 Duo, the geometric mean of the

absolute IPC difference for all the micro-benchmarks is 10%. The

average error was 9% for the control category, 8% for the dependency,

1% for execution, 26% for memory load dependent , 5% for memory

load independent and 22% for memory store independent.

Figure 3 shows results for the Sandy Bridge (real) machine and

SiNUCA (sim). For Sandy Bridge, the geometric mean of the absolute

IPC difference for all the micro-benchmarks is 6%. The average error

was 1% for the control category, 1% for the dependency, 2% for

execution, 12% for memory load dependent, 6% for memory load

independent and 26% for memory store independent.

The results of each micro-benchmark category are discussed below:

Control benchmarks: Evaluating the control benchmark Small bbl,
we conclude that the maximum number of parallel predicted branches

TABLE IV
PARAMETERS TO MODEL THE SANDY BRIDGE PROCESSOR.

Processor Cores: 8 cores @ 2.0 GHz, 32 nm; 4-wide Out-of-Order;
16 B fetch block size; 1 branch per fetch; 8 parallel in-flight branches;
16 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit stages);
18-entry fetch buffer, 28-entry decode buffer; 168-entry ROB;
MOB entries: 64-read, 36-write; 1-load and 1-store units (1-1 cycle);
3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
Branch Predictor: 4 K-entry 4-way set-assoc., LRU policy BTB;
Two-Level GAs 2-bits; 16 K-entry PBHT; 256 lines and 2048 sets SPHT;
L1 Data + Inst. Cache: 32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
MSHR: 8-request, 10-write-back, 1-prefetch;
Stride prefetch: 1-degree, 16-strides table;
L2 Cache: Private 256 KB, 8-way, 64 B line size; LRU policy;
MSHR: 4-request, 6-write-back, 2-prefetch; 4-cycle;
Stream prefetch: 2-degree, 32-dist., 256-streams;
L3 Cache: Shared 16 MB (8-banks), 2 MB per bank; Bi-directional ring;
16-way, 64 B line size; LRU policy; 6-cycle; Inclusive;
MOESI coherence protocol; MSHR: 8-request, 12-write-back;
Memory Controller: Off-chip DRAM controller, 4-channels, 8 burst length;
DDR3 1333 MHz; 3 core-to-bus frequency ratio; 8 banks, 1 KB row buffer;
Open-row first policy; 9-CAS, 9-RP, 9-RCD and 24-RAS cycles;

608

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

C
o

m
p

le
x

C
o

n
d
iti

o
n

a
l

R
a

n
d
o

m
S

m
a
ll_

b
b

l
S

w
itc

h
C

h
a

in
-1

C
h

a
in

-2
C

h
a

in
-3

C
h

a
in

-4
C

h
a

in
-5

C
h

a
in

-6
F

P
-a

d
d

F
P

-d
iv

F
P

-m
u

l
IN

T
-a

d
d

IN
T

-d
iv

IN
T

-m
u
l

0
0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb
0

0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb
0

0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb

Control Dependency Execution Mem. Load Dependent Mem. Load Independent Mem. Store Independent

IP
C

Real Sim

Fig. 2. Performance results for the Core 2 Duo.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

C
o

m
p

le
x

C
o

n
d
iti

o
n

a
l

R
a

n
d
o

m
S

m
a
ll_

b
b

l
S

w
itc

h
C

h
a

in
-1

C
h

a
in

-2
C

h
a

in
-3

C
h

a
in

-4
C

h
a

in
-5

C
h

a
in

-6
F

P
-a

d
d

F
P

-d
iv

F
P

-m
u

l
IN

T
-a

d
d

IN
T

-d
iv

IN
T

-m
u
l

0
0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb
0

0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb
0

0
0

1
6

kb
0

0
0

3
2

kb
0

0
0

6
4

kb
0

0
1

2
8

kb
0

0
2

5
6

kb
0

0
5

1
2

kb
0

1
0

2
4

kb
0

2
0

4
8

kb
0

4
0

9
6

kb
0

8
1

9
2

kb
1

6
3

8
4

kb
3

2
7

6
8

kb

Control Dependency Execution Mem. Load Dependent Mem. Load Independent Mem. Store Independent

IP
C

Real Sim

Fig. 3. Performance results for the Sandy Bridge.

in execution inside the pipeline is equal to 8 for both machines. With

the Random benchmark, we calculate the misprediction penalty as

20 cycles for Core 2 Duo and 14 cycles for Sandy Bridge. The

first source of differences regarding the two-level branch predictor

implemented inside SiNUCA is that this well known mechanism

is not guaranteed to be exactly the same as the one implemented

in a real machine. Since this mechanism’s prediction is sensitive

to its implementation, small implementation differences can lead to

different predictions and also performance.

Dependency benchmarks: Observing the behavior of dependency

benchmarks, we can notice that for Chain-1 and Chain-6 the sim-

ulation obtains very close results to the real machines. Inside the

simulator, all the dependencies are solved one cycle after the result

is available. For Chain-1, we can observe that the latency for data

forwarding is modeled correctly. However, the results from Chain-
2 to Chain-5 show that the real machines have a limited maximum

number of data forwardings per cycle. For Chain-6, the instruction

parallelism is high enough to hide this bottleneck. We observe that

Core 2 Duo has a higher differences due to its limited number of

forwarding paths.

Execution benchmarks: Although we obtained very accurate results

for the integer and floating point applications (less than 4% of

difference), we notice that INT-div has a very low IPC, which is

caused by the high latency of the functional unit. Due to this low IPC,

the performance difference is high (35% on average) compared to the

simulation for this particular benchmark. Additionally, the latencies

for instructions that use the same functional unit can vary in a real

machine. However, in SiNUCA, the execution latencies are defined

by the functional unit used, and not by the instruction itself. Such

modification in the simulator would be impractical since there are

hundreds of instructions in the x86-64 ISA.

Memory benchmarks: Although the average relative error for mem-

ory load dependent and memory store independent categories appear

to be high, their absolute error is low due to the low IPC. For instance,

the IPC in the Core 2 Duo for the memory store independent with

32 MB on the real machine is 0.030 while in the simulator it is 0.046,

resulting in an relative error of 55%. Such a low absolute error tends

not to affect the performance of real applications with a mixed types

of operations.

The memory pre-fetching algorithms implemented in SiNUCA are

well known techniques. However, the information about the real

processor pre-fetcher is missing some details and it is not guaranteed

that the simulated pre-fetchers perform exactly the same way as the

real ones. This difference also happens because small changes in the

pre-fetcher parameters, such as number of strides, can have a high

impact on the Misses per Kilo Instructions (MPKI). The memory

controller scheduling policy can also cause performance differences,

depending on the real hardware implementation. For our experiments,

the common open-row first policy was used.

D. SPEC-CPU2006 Results

In order to evaluate the simulator results with real benchmarks, this

section presents the IPC results of executing the applications from

the SPEC-CPU2006 suite [20] on both evaluated architectures. The

results for the real machines consider the full application execution,

while the simulation results were obtained executing a representative

slice of 200 million instructions of each application, selected by

PinPoints [21].

Figure 4 presents the performance results for the Core 2 Duo (real)

and with SiNUCA (sim). The average IPC error for this benchmark

suite was 19%, where the integer applications had an average error

of 24% and the floating point applications an error or 16%. Figure 5

presents the performance results for the Sandy Bridge machine. The

609

0.00

0.50

1.00

1.50

2.00

2.50

a
st

a
r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6

4
re

f
h

m
m

e
r

lib
q

u
a

n
tu

m
m

cf
o

m
n

e
tp

p
p

e
rl

b
e
n

ch
sj

e
n

g
xa

la
n
cb

m
k

G
e

o
M

e
a

n
b

w
a

ve
s

ca
ct

u
sA

D
M

ca
lc

u
lix

d
e
a

lII
g

a
m

e
ss

G
e
m

sF
D

T
D

g
ro

m
a

cs
lb

m
le

sl
ie

3
d

m
ilc

n
a
m

d
p

o
vr

a
y

so
p

le
x

sp
h

in
x3

to
n
to w
rf

ze
u
sm

p
G

e
o

M
e

a
n

G
e

o
M

e
a

n

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP *

IP
C

Real Sim

Fig. 4. Performance results for the Core 2 Duo.

0.00

0.50

1.00

1.50

2.00

2.50

a
st

a
r

b
zi

p
2

g
cc

g
o
b

m
k

h
2
6

4
re

f
h

m
m

e
r

lib
q

u
a

n
tu

m
m

cf
o
m

n
e
tp

p
p

e
rl

b
e
n

ch
sj

e
n

g
xa

la
n
cb

m
k

G
e

o
M

e
a

n
b

w
a

ve
s

ca
ct

u
sA

D
M

ca
lc

u
lix

d
e
a

lII
g

a
m

e
ss

G
e

m
sF

D
T

D
g

ro
m

a
cs

lb
m

le
sl

ie
3

d
m

ilc
n

a
m

d
p

o
vr

a
y

so
p

le
x

sp
h

in
x3

to
n
to w
rf

ze
u

sm
p

G
e

o
M

e
a

n
G

e
o

M
e

a
n

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP *

IP
C

Real Sim

Fig. 5. Performance results for the Sandy Bridge.

average IPC error for this benchmark suite was 12%, where the

integer applications had an average error of 17% and the floating point

applications an error or 10%. Compared to the related work presented

in Section II, SiNUCA presents a moderately higher accuracy.

For the SPEC-CPU2006 benchmarks, the main source of difference

was the branch predictor, with an average error of 19% on both

architectures. In our experiments, we could observe that applications

behave differently when switching between the PAs and GAs branch

predictors, in such way that a hybrid predictor is being considered

to reduce the gap between the real and simulator difference. This,

together with the fact that we simulate only a slice of the application,

explains the higher differences compared to the micro-benchmarks.

It also indicates that the interaction between components has to

be analyzed in more detail, suggesting the extension of the micro-

benchmarks to study this interaction.

VI. CONCLUSIONS

We presented SiNUCA, a performance validated micro-architecture

simulator. We also introduced a set of micro-benchmarks that

stresses separate architectural components. SiNUCA supports sim-

ulation of emerging techniques and is easy to extend. Our val-

idation showed an average difference on performance of 10%

with a set of micro-benchmarks when simulating a Core 2 Duo

machine. For a Sandy Bridge system, the average perfor-

mance difference was 6%. Evaluation results with the SPEC-

CPU2006 benchmarks showed higher accuracy compared to

previously proposed simulators. SiNUCA and the microbench-

marks are licensed under the GPL and publicly available on-

line at https://github.com/mazalves/sinuca and at

https://github.com/mazalves/microbenchmarks. As

future work, we will compare the energy consumption between the

real machine and SiNUCA coupled to an energy modeling tool such

as McPAT. We also intend to perform a detailed validation with

parallel applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of CNPq and

CAPES.

REFERENCES

[1] R. Desikan, D. Burger, and S. Keckler, “Measuring experimental error in
microprocessor simulation,” in Proc. IEEE/ACM Int. Symp. on Computer
Architecture, 2001.

[2] J. Doweck, “White paper inside intel R© core R© microarchitecture and
smart memory access,” Intel Corporation, 2006.

[3] C. Kim, D. Burger, and S. W. Keckler, “Non-uniform cache architetures
for wire-delay dominated on-chip caches,” IEEE Computer, 2003.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Computing Surveys (CSUR), vol. 38, 2006.

[5] T. Austin, E. Larson, and D. Ernst, “Simplescalar: An infrastructure for
computer system modeling,” IEEE Micro, vol. 35, 2002.

[6] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A full
system simulation platform,” IEEE Micro, vol. 35, Feb 2002.

[7] V. Weaver and S. McKee, “Are cycle accurate simulations a waste of
time,” in Workshop on Duplicating, Deconstructing, and Debunking,
2008.

[8] J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze, S. Sarangi,
P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,” January 2005.

[9] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005.

[10] N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,” ACM
SIGARCH Computer Architecture News, vol. 39, 2011.

[11] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt,
“The m5 simulator: Modeling networked systems,” IEEE Micro, 2006.

[12] M. Marty, B. Beckmann, L. Yen, A. Alameldeen, and K. M. Min Xu,
“General execution-driven multiprocessor simulator,” in Proc. ISCA
Tutorial, 2005.

[13] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of gem5 simulator system,” in Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, 2012.

[14] M. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchitec-
tural simulator,” in Proc. Int. Symp. on Performance Analysis of Systems
& Software, 2007.

[15] R. Ubal, J. Sahuquillo, S. Petit, and P. López, “Multi2sim: A simulation
framework to evaluate multicore-multithread processors,” in Interna-
tional Symposium on Computer Architecture and High Performance
computing, 2007.

[16] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero, and D. Ortega,
“Cotson: infrastructure for full system simulation,” ACM SIGOPS Op-
erating Systems Review, vol. 43, 2009.

[17] A. Patel, F. Afram, S. Chen, and K. Ghose, “Marssx86: A full system
simulator for x86 cpus,” in Design Automation Conference, 2011.

[18] T. Bojan, M. Arreola, E. Shlomo, and T. Shachar, “Functional coverage
measurements and results in post-silicon validation of core 2 duo family,”
in Int. High Level Design Validation and Test Workshop, 2007.

[19] M. Yuffe, E. Knoll, M. Mehalel, J. Shor, and T. Kurts, “A fully integrated
multi-cpu, gpu and memory controller 32nm processor,” in Int. Solid-
State Circuits Conference Digest of Technical Papers, 2011.

[20] J. L. Henning, “Spec cpu2006 benchmark descriptions,” ACM SIGARCH
Computer Architecture News, vol. 34, no. 4, 2006.

[21] H. Patil, R. S. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi, “Pinpointing representative portions of large intel R©
itanium R© programs with dynamic instrumentation,” in Proc. IEEE/ACM
Int. Symp. on Microarchitecture, 2004.

610

