
Processing in 3D memories to speed up operations
on complex data structures

Paulo C. Santos†, Geraldo F. Oliveira†, João P. Lima†, Marco A. Z. Alves‡, Luigi Carro†, Antonio C. S. Beck†
†Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

‡Department of Informatics – Federal University of Paraná – Curitiba, Brazil

Email: †{pcssjunior, gfojunior, jplima, carro, caco}@inf.ufrgs.br ‡{mazalves}@inf.ufpr.br

Abstract—Pointer chasing has been, for years, the kernel
operation employed by diverse data structures, from graphs to
hash tables and dictionaries. However, due to the bewildering
growth in the volume of data that current applications have to
deal with, performing pointer chasing operations have become a
major source of performance and energy bottleneck, due to its
sparse memory access behavior. In this work, we aim to tackle this
problem by taking advantage of the already available parallelism
present in today’s 3D-stacked memories. We present a simple
mechanism that can accelerate pointer chasing operations by
making use of a state-of-the-art PIM design that executes in-
memory vector operations. The key idea behind our design is
to run speculative loads, in parallel, based on a given memory
address in a reconfigurable window of addresses. Our design
can perform pointer-chasing operations on b+tree 4.9× faster
when compared to modern baseline systems. Besides that, since
our device avoids data movement, we can also reduce energy
consumption by 85% when compared to the baseline.

Keywords—In-Memory Processing, Pointer-Chasing, Big Data,
Reconfigurable, Vector Instructions, Hybrid Memory Cube

I. INTRODUCTION

In this paper, we aim to take advantage of 3D-stacked mem-
ories to track the pointer-chasing problem. Previous works,
as [1], [2], [3], [4] have already design Processor-in-Memory
(PIM) mechanisms that seek to solve the pointer-chasing prob-
lem. However, the fundamental differences in our mechanism
are twofold. First, we observe that one can use of the vast
parallelism available in 3D memories, in special the Hybrid
Memory Cube (HMC) device, to induce spacial locality via
speculation. Second, we show that when spacial locality cannot
be exploited due to sparse memory access, one can still take
advantage of PIM by including a cache-like mechanism near
memory. Our mechanism was designed inside the logic layer
of a HMC device.

The major contributions of this work are the following.
First, we propose a simple PIM architecture, called Pointer-
Chasing Engine (PCE), to accelerate pointer-chasing opera-
tions. Our mechanism takes advantage of the available paral-
lelism in 3D-stacking memories to execute speculative loads
without the interference of the host processor. Second, we
evaluation of our design using classic data structures that the
pointer-chasing behavior dominates execution time. Besides
that, we make a design space exploration of our mechanism
to understand the benefits it could provide depending on the
address pattern produced by the algorithm. Finally, our results

The authors gratefully acknowledge the support of CNPq and CAPES.

show that we are up to 4.9× faster than the baseline, reducing
energy consumption to only 13% of baseline’s consumption.

II. MECHANISM

Our mechanism explores speculative loads in memory
by taking advantage of a state-of-the-art PIM design that
includes reconfigurable vector units and vector register files
inside HMC, called Reconfigurable Vector Unit (RVU) [5],
[6]. We expand the Instruction Set Architecture (ISA) of the
RVU accelerator to include a single FIND instruction that is
responsible for triggering the traversing along the targeted data
structure. The major component of our design is the PCE
unit, a simple finite-state machine that decouples the FIND
instruction into the required operations.

A. PCE

Figure 1 illustrates the distribution of this engine along
all vaults inside the HMC module. Each instance of our
mechanism is basically composed by a simplified version
the RVU architecture and a specialized Finite State Machine
(FSM). The Functional Units (FUs) are capable of executing
scalar and vector operations such as addition, comparison
and gather/scatter micro-instructions, which are the main
computations required by our design. The FSM is responsible
for managing requests and triggering operations according to
the information decoded from the FIND instruction. Four main
operations are managed by the FSM:

• Load Generation - The FSM generates a LOAD
operation with the address provided by a previous load
or by a FIND instruction.

• Check Data - FSM checks if the data being searched
has been reached. It selects the correct operand from
the current vector register.

• Address Translation - Virtual address are translated
directly by the PCE using the available FUs. The
virtual-to-physical address translation is presented in
more details on Section II-D.

• Internal Find - A PCE instance forward the FIND
instruction to another PCE when the required data lies
on another vault.

B. Find in Memory Instruction and Algorithm

Aiming to generalize the use of our mechanism, we gath-
ered all necessary information to traverse representative linked

897978-3-9819263-0-9/DATE18/ c©2018 EDAA

Fig. 1: Overview of our Pointer-Chasing Engine placed into
the HMC device.

data structures on a FIND instruction. In this way, different
data structures can take advantage of our design.

The FIND instruction is composed by:

• structure type - This field informs the PCE the type
of data structure to traverse. It can be linked list, hash,
or b+tree.

• base address - The address of the node where the
search begins. It is the start point and the first node
to be loaded by PCE.

• data offset - The distance between the data of interest
and the beginning of its node. It is the position of the
data itself in linked lists and hash tables, and it is also
the offset of an array of keys in b+trees.

• data size - The size of data in bytes. Again, it
represents the size of data in linked lists and hash
tables and the number of pages/key in b+trees.

• next address offset - The distance between the pointer
to the next node and the beginning of its node for
linked list and hash tables. For b+trees, it contains the
offset to the start of an array of pointers to its children.

• gold - The value used as a key in the search.

• structure size - The size of a single element in the
data structure, generally referred as a node.

• operand size - Our mechanism can work with dif-
ferent operand sizes, allowing to speculate through
different amounts of memory address. In this way,
this parameter is used to configure the PCEs size, by
grouping them in order to form speculative operands
from 64 bytes to 8192 bytes.

When an instruction is received by the HMC, it is directed
to a corresponding vault based on the base address field and
the HMC interleaving. In this way, the algorithm used in our
design to traverse the target data structures are explained as
follows:

1 PCE receives the FIND instruction and translates the
base address using the address translation explained on Sec-
tion II-D;

2 PCE checks the address range of the request. Since each
PCE can operate only on its vault address range, we can use
the interleaving mapping scheme to trivially calculate whether
or not the request belongs to the current vault. If it does, the
process continues to step 3 . Otherwise, PCE encapsulates
the request as an Internal Find operation, and sends it to
the correct vault, following to the step 3 . The Internal Find
operation replaces the base address field present in the virtual
address in the request with its corresponding physical address.
From this point, PCE only operates on physical addresses.

3 PCE decodes the instruction, and reads data from
memory. According to the operand size, the data chunk can
range from 32 Bytes to 8192 Bytes. Once HMC memory
controller returns the requested data, PCE stores it to one of
its internal vector registers. By loading a large amount of data
from memory at once, PCE can take advantage of speculative
load behavior. Besides that, in this step, the physical address
and the operand size that originates the read operation are
noted on specific registers, RA and RS respectively.

4 PCE compares the gold present in the instruction with
the loaded data (data offset is needed to determine its position):
If the gold value matches the loaded data, PCE finishes the
operation by flagging a particular memory address where the
host keeps polling to evaluate the result. If not, the operation
continues to the step 5 . Although PCE takes advantage of
vector operations, the comparison between the gold data and
the current data is a scalar comparison, since we are sure about
just one node, and the remaining data is speculation for next
operations.

5 PCE translates all virtual next address fields that lies on
the active vector register by applying the address translation
techniques from Section II-D as vector operations. The next
address offset is needed to determine the position of virtual
addresses.

6 PCE checks if the next address belong to the current
vault. If the next address does not belong, the Internal Find
operation is encapsulated and sent to the correct vault, contin-
uing to the step 3 . Else, the address belongs to the current
vault and it continues on step 7 .

7 PCE checks if the current register contains the required
next address. This procedure is made by using the previously
mentionated RA and RS registers. In this case, a simple calculus
that comprises of checking if the next address fits between
the range of RA and RA+RS is performed. If it fits, the
least significant bits of next address are used to determine its
position on the current vector register. Then, it continues on
step 4 . Else, as it is guaranteed that the next address belongs
to the currently vault, a load operation is generated for the
current vault, and it goes to step 3 .

Although the base address that comes in the FIND instruc-
tion emitted by the host processor contains a virtual address,
we adopted the idea that if the virtual address does not match
with the correct vault it will be treated on steps 1 and
2 . Also, considering that the instruction will trigger several

operations, the first vault compulsory miss will be mitigated
by other operations. Moreover, it is important to note that
if we consider one vector register per vault, when a second
request needs to be written to the same register, a replacement

898 Design, Automation And Test in Europe (DATE 2018)

must occur. Considering more vector registers per vault, the
replacement can be delayed, increasing the chance of a PCE
hit to happen.

C. Reconfigurable PCEs and Scalability

As each vault controller has access to different Dynamic
Random Access Memory (DRAM) regions, a custom engine
could manage those independent vault controllers to increase
or reduce the size of contiguous data chunks loaded in parallel
in HMC. Given that intervault communication allow us to
request registers from different PCEs, we take advantage of
this internal communication path to group PCEs and operate
on a wider register. For instance, grouping every two physical
PCEs to provide a single logical PCEs enable us to speculate
loads in a window of 512 bytes and operate on a register of
512 bytes, which provides 16 logical PCEs of 512 bytes. In
the same way, larger groups can be unified providing from 32
logical blocks of 256 bytes up to a single block of 8192 bytes
of contiguous data. All those different configurations allow us
to explore the influence of a wider data chunk in different data
structures.

D. Virtual address translation

As big-memory workloads avoid features of page-based
virtual, such as swapping and per-page protection, and allocate
large chunks of memory with uniform access permission at
start-up to prevent the high cost of page-based virtual memory,
mapping part of a process’ virtual address region with a
direct segment rather than pages was proposed by [7]. Direct
segments allow efficient mapping of large ranges of contiguous
virtual memory to contiguous physical memory address using
small, fixed hardware based only on three registers for each
core: base, limit and offset. If a virtual address V is between
the base and limit (base � V < limit), it is translated to a
physical address V +offset without a Translation Look-aside
Buffer (TLB) miss.

III. EXPERIMENTAL SETUP AND RESULTS

Table I describes the configuration of the baseline systems,
an also the internal configuration of the PCE. Our baseline
is an ARM-A57 + 1MB of Last-Level Cache (LLC). In our
analysis, we explored different configurations for the PCEs,
ranging its operand size capabilities from 64 bytes to the
limit of 8192 bytes. We extrapolate the LLC size for the
baseline to 2M Bytes, aiming to evaluate the benefits of a
larger cache memory for the pointer-chasing operation. In our
experiment, we used HMC as main memory to all systems.
To implement our design, we used a cycle-accurate HMC
simulator [8], which allows us to build our custom device
into the HMC logic-layer. This simulator can be connected
to the popular gem5 [9] system to provide an accurate way
to compare our mechanism with the baselines. We estimated
energy by synthesizing a Hardware Description Language of
PCE using Cadence RTL Compiler Tool with a technology
node of 32nm. We also consider the power consumption of
the host processor connected to our system. For the baseline
ARM processor and cache memories, we are based on McPat
[10] coupled with Cacti [11] tools extrapolated to a technology
of 22nm. The HMC power and energy consumption results
relies on [12]. We have evaluated our design using the same

TABLE I: Baseline and Design system configuration.

ARM A57: 2.5 GHz; 4 cores; NEON Instruction Set Capable;
I/D 64KB L1 Cache 2 Cycles + 16-way L2 Cache 1MB 20 Cycles;
Power Consumption - 7W;

PCEs: 1.25 GHz; 32 Independent Vector Units;
Vectorial Operations up to 256Bytes per Unit;
Vector Register Bank of 8x256Bytes each;
Scalar Register Bank of 8x32 bits each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Interconnection between vaults: 5 cycles latency;
Host Processor - 1.2GHz ARM Cortex A8; IL1 64KB + DL1 64KB;
Power Consumption - PCE Logic - 3.1W estimated;
Power Consumption - Host Processor - 0.6W;

HMC: Version 2.0 - 8GB - 32 Vaults - 16 Banks per Vault - 4 Links;
Power Consumption - 11W;

three data-intensive micro-benchmarks employed in [1], [3].
The micro-benchmarks are a Linked Lists (varying the address
space from continuous to 25%, 50% and 100% random), the
Hash Table proposed by [13], and the B+tree implementation
of DBx1000 [14].

Figure 2 presents the speedup and energy result for the
FIND instruction traversing a Linked List of 1 M nodes
using both the ARM processor with extra LLC memory and
our mechanism limited to 64k bytes, as originally proposed
by [5]. In the first set (orange bars), the Linked List lies
contiguously on memory, which means that techniques such
as cache lines, streaming and next line prefetches can be
exploited. In this case, as the application presents a pure
streaming-like behavior and no data-reuse is present, our
mechanism can avoid cache latencies, thus accelerating the
application even when it uses equal data chunk size of the
cache memories (64 bytes). Also, it is possible to note that
when the cache size is increased, performance remains the
same, mainly because only spatial locality is available in this
case. Moreover, as PCE can enlarge the accessed data chunk,
it is capable of increasing the performance by speculatively
reading up to 8192 bytes of data from memory at once taking
advantage of spatial locality behavior. Despite the sequential
characteristics of the algorithm presented in Section II-B, the
speculative loads mitigate the DRAM access latencies, thus
increasing the overall performance by 2.7× when speculating
over 64k bytes of data in a window of 8k bytes. On the other

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AR
M

-2
M

B
PC

E-
64

B-
64

KB
PC

E-
25

6B
-6

4K
B

PC
E-

10
24

B-
64

KB
PC

E-
40

96
B-

64
KB

PC
E-

81
92

B-
64

KB
AR

M
-2

M
B

PC
E-

64
B-

64
KB

PC
E-

25
6B

-6
4K

B
PC

E-
10

24
B-

64
KB

PC
E-

40
96

B-
64

KB
PC

E-
81

92
B-

64
KB

AR
M

-2
M

B
PC

E-
64

B-
64

KB
PC

E-
25

6B
-6

4K
B

PC
E-

10
24

B-
64

KB
PC

E-
40

96
B-

64
KB

PC
E-

81
92

B-
64

KB
AR

M
-2

M
B

PC
E-

64
B-

64
KB

PC
E-

25
6B

-6
4K

B
PC

E-
10

24
B-

64
KB

PC
E-

40
96

B-
64

KB
PC

E-
81

92
B-

64
KB

Contiguous RAND 25% RAND 50% RAND 100%

N
or

m
al

ize
d

Sp
ee

du
p

an
d

En
er

gy

Energy

Fig. 2: Linked List 1M nodes
Performance and Energy Normalized to ARM 1MB Cache

Design, Automation And Test in Europe (DATE 2018) 899

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

AR
M

-2
M

B

PC
E-

64
B-

8K
B

PC
E-

25
6B

-8
KB

PC
E-

10
24

B-
8K

B

PC
E-

40
96

B-
8K

B

PC
E-

81
92

B-
8K

B

PC
E-

64
B-

64
KB

PC
E-

25
6B

-6
4K

B

PC
E-

10
24

B-
64

KB

PC
E-

40
96

B-
64

KB

PC
E-

81
92

B-
64

KB

AR
M

-2
M

B

PC
E-

64
B-

8K
B

PC
E-

25
6B

-8
KB

PC
E-

10
24

B-
8K

B

PC
E-

40
96

B-
8K

B

PC
E-

81
92

B-
8K

B

PC
E-

64
B-

64
KB

PC
E-

25
6B

-6
4K

B

PC
E-

10
24

B-
64

KB

PC
E-

40
96

B-
64

KB

PC
E-

81
92

B-
64

KB

Hash Table B+Tree

N
or

m
al

iz
ed

 S
pe

ed
up

 a
nd

 E
ne

rg
y

Energy

Fig. 3: Hash 1.5M nodes and B+Tree 3M nodes
Performance and Energy Normalized to ARM 1MB Cache

hand, when the entire data is placed randomly in memory
(red bars in Figure 2), the amount of data reuse increases,
leveraging the relevance of the cache size presented in the
system. However, even when doubling the cache size of the
baseline, the performance increment achieved by the ARM
processor is limited to 5%. In contrast, PCE can speedup 2.15×
when taking advantage of a speculative window of 4k bytes
and making use of 64k bytes of registers. In this way, our
design reduces energy consumption by 60% of the energy
consumed by the baseline. Also, one can notice that when
speculating over 8192 bytes of data, the achieved speedup is
of 2.05×, showing the benefits reconfigurable speculation can
bring to our evaluation.

Figure 3 presents results for Hash Table and B+Tree
operating over 1.5M nodes and 3M nodes respectively. By
making use of the proposed Find operation through Hash Table
structures leads to a speedup of 2.7×, using 64k bytes of
registers with 8192 bytes of speculative load operand (blue
bars), while the baseline with additional cache memory (2MB)
improves performance by only 7%. One can notice that due
to the reduced temporal locality presented in the Hash Table
benchmark, our mechanism is not able to take advantage of
its 64k bytes of registers, since when only 8k bytes of total
registers are available (orange bars), the acceleration is slightly
lower, achieving 2.55× of speedup. Besides that, PCEs reduces
energy consumption by 65%, while improving performance by
up to 2.7× on the Hash Table structure.

The B+Tree application presents a more intensive temporal
locality, which can be observed on green and orange bars of the
Figure 3. The additional cache size available for the baseline
can provide only 7% of performance improvement, showing
that the reduced spatial locality dictates an important rule on
overall performance. On the other hand, PCE can take advan-
tage of its configurable operands and vector FUs. The operand
size set to 4096 bytes represents the best compromise between
temporal and spatial locality for this application. Also, as the
temporal locality is considerable, the 64k bytes of registers are
better exploited. Furthermore, the vector operations and simple
TLB design facilitate the calculus of the next addresses (16
per node on B+Tree), which increases overall performance. In
this way, our design can achieve a speedup of 4.94× when
compared to the baseline, while the energy reduction is near
to 87%.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we present an efficient approach to process
complex data structure by tackling the bottleneck present in
pointer chasing operations. Our mechanism takes advantage
of the parallelism present in 3D-stacked memories and a
state-of-the-art PIM design that includes reconfigurable vector
units. Our mechanism, named PCE, make use of speculation
to perform pointer-chasing operations with reduced energy
consumption and improved performance. In a majority of
cases, a wider cache line can benefit applications because
operands are contiguously allocated in memory. Our device is
capable of accelerating linked list traversal and hash tables by
a factor of 2.5, and b+tree by 4.9 while consuming 13% of the
baseline’s energy. In future works, we expect to evaluate how
our mechanism behaves in whole applications, as for database
and large-scale graphs. Also, we plan to explore popular
algorithms that use linked data structures, like PageRank, to
be performed in memory.

REFERENCES

[1] K. Hsieh, S. Khan, N. Vijaykumar et al., “Accelerating pointer chasing
in 3D-stacked memory: Challenges, mechanisms, evaluation,” in Int.
Conf. on Computer Design (ICCD), 2016.

[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Int. Symp. on
Computer Architecture, 2015.

[3] B. Hong, G. Kim, J. H. Ahn, Y. Kwon, H. Kim, and J. Kim, “Accelerat-
ing Linked-list Traversal Through Near-Data Processing,” in Int. Conf.
on Parallel Architectures and Compilation - PACT, 2016.

[4] Z. Liu, I. Calciu, M. Herlihy, and O. Mutlu, “Concurrent data structures
for near-memory computing,” in 29th ACM Symp. on Parallelism in
Algorithms and Architectures, 2017.

[5] P. C. Santos, G. F. Oliveira, D. G. Tomé, M. A. Alves, E. C. Almeida,
and L. Carro, “Operand size reconfiguration for big data processing
in memory,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017.

[6] G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “Nim: An
hmc-based machine for neuron computation,” in Int. Symp. on Applied
Reconfigurable Computing, 2017.

[7] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient
virtual memory for big memory servers,” in ACM SIGARCH Computer
Architecture News, 2013.

[8] G. F. Oliveira, P. C. Santos, M. A. Alves, and L. Carro, “A generic
processing in memory cycle accurate simulator under hybrid memory
cube architecture,” in Int. Conf. on Embedded Computer Systems:
Architectures, Modeling and Simulation (SAMOS), 2017.

[9] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH Computer Architecture News, vol. 39, 2011.

[10] S. Li, J. H. Ahn, R. D. Strong et al., “The McPAT Framework
for Multicore and Manycore Architectures: Simultaneously Modeling
Power, Area, and Timing,” Transactions on Architecture and Code
Optimization, vol. 10, no. 1, p. 5, 2013.

[11] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power, and area model,” 2001.

[12] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in Symp. on VLSI Technology,
2012.

[13] B. Fitzpatrick, “Distributed caching with memcached,” Linux journal,
vol. 2004, no. 124, p. 5, 2004.

[14] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores,” Proceedings of the VLDB Endowment, 2014.

900 Design, Automation And Test in Europe (DATE 2018)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

