
Design Automation for Embedded Systems (2019) 23:41–55
https://doi.org/10.1007/s10617-018-09218-7

Trace-driven and processing time extensions for Noxim
simulator

Ivan Luiz Pedroso Pires1 ·Marco Antonio Zanata Alves1 ·
Luiz Carlos Pessoa Albini1

Received: 22 May 2018 / Accepted: 13 December 2018 / Published online: 5 January 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Simulation is one of the main tools used to analyze and test new proposals in the Network-on-
Chip field. Several simulators can be found in the literature, among them theNoxim simulator
stands out. It is being used by many researchers due to the wireless support and open-source
availability. An important issue at the simulation phase is the choice of workload, as it may
affect testing the system and its features. The correct workload can lead to rapid and efficient
system development, while the wrong one may compromise the entire system evaluation.
To ensure a more realistic simulation, simulators usually relies on real workloads by using a
trace-driven approach. Although Noxim provides a simple support for input traces, it is very
limited to a general behavior of the system, accepting only a generic injection rate parameter
over time. Another important part of the simulator is the ability to consider the Processing
Elements processing time. We propose in this paper an extension of the Noxim simulator to
address these issues. Consequently, results are more realistic and may be possible to predict
the total execution time very accurately. This extension is demonstrated and evaluated using
the NAS-NPB workload.

Keywords Network-on-Chip · Simulation · Processing time · Trace

1 Introduction

Network-on-Chip (NoC) [7] is the current interconnection paradigm to design all large-scale
chips. It is scalable and can be adapted to several computational paradigms and applicable to

This work was partially supported by CNPq and CAPES.

B Luiz Carlos Pessoa Albini
albini@inf.ufpr.br

Ivan Luiz Pedroso Pires
ilppires@inf.ufpr.br

Marco Antonio Zanata Alves
mazalves@inf.ufpr.br

1 Department of Informatics, Federal University of Paraná (UFPR), Curitiba, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-018-09218-7&domain=pdf
http://orcid.org/0000-0002-3709-9214

42 I. L. P. Pires et al.

various areas, like high performance multiprocessing computers [25]. NoC communication
is performed through packets, divided into small information units called flits, transmitted
from source to destination by routers, hubs and network interfaces over wired or wireless
links [11].

When designers want to evaluate new interconnection architectures and organizations,
simulation is one of the main tool used to analyze traffic and measure the performance,
power and area of NoC. It is a suitable tool for testing and analyzing results from new
concepts and ideas without hardware prototyping. To guarantee the accuracy of the results,
the simulator must comply with the state-of-the-art proposals and technologies.

Nowadays, there are several specific simulators for NoC interconnections such as: Noxim
[9]; Booksim [20]; Naxim [26]; Hornet [29]; Topaz [1]; HNOCS [6]; NoC for OMNeT++ [5];
WNoC Simulator [35]; Darsim [23]; Netrace [15]; Garnet [2]; gpNoCsim [16]; Nirgam [18];
NNSE [24]. Other simulators non-specific for NoC could be adapted in some way: Gem5
[8]; CACTI [37]; NS-3 [30]; etc. In this work, only the specific-NoC simulator with focus on
performance and execution time that were published in scientific papers were considered.

To ensure a more realistic simulation, any simulator must provide ways to receive input
from realistic executions, which can be made using a trace-driven approach to run real
data in testing system. A trace is a log of events and usually includes: time, type, size
and other important parameters associated with each event, varying depending on the type of
simulation is being performed. Trace-driven simulations can be used by resourcemanagement
algorithms; deadlockprevention;CPUscheduling; cache analysis; etc.Among all advantages,
trace-driven simulation allows realistic workload very similar to the actual implementation.
However, also has some disadvantages as the complexity and single point of validation [19].

Table 1 shows a brief summary of the NoC simulators and depicts their ability to handle
traffic input tracing, to support wireless communication and the source code availability.

A first version of this article considering only the trace-drive extension was previously
published in [28]. It extended the Noxim Simulator to accept external input traces based on

Table 1 Summary of NoC simulators

Simulator Trace-driven
traffic

Wireless
communication

Source
availability

Noxim’15 [9] • •
Booksim’13 [20] • •
Naxim’13 [26]

Hornet’12 [29] • •
Topaz’12 [1] • •
HNOCS’12 [6] • •
NoC OMNeT++’11 [5] • •
WNoC Simulator’11 [35] •
Darsim’10 [23] • •
Netrace’10 [15] • •
Garnet’09 [2] • •
gpNoCsim’07 [16] •
Nirgam’07 [18] • •
NNSE’05 [24]

123

Trace-driven and processing time extensions for Noxim simulator 43

messages. This extension enabled Noxim to receive realistic and controlled traffic traces as
input, providing ways to compare real workloads in different NoC scenarios.

In this paperwe introduce the ability to consider the Processing Elements (PEs) processing
time as well as the support to Message Passing Interface (MPI) communication on Noxim
for the first time, making it a huge improvement on the results presented in [28]. Now, results
are more realistic and may be possible to predict the total execution time very accurately
considering the MPI primitives for synchronization barrier, blocking and non-blocking com-
munication. It can be observed that none of the previous proposed NoC simulators provides
support to all these features. The combination of all these features results in a powerful sim-
ulator tool for realistic workloads, including using message passing, to design new concepts
for inter and intra-chip communication.

The rest of this paper is organized as follows: Sect. 2 contains an overview of Noxim Sim-
ulator and related proposals for Noxim extensions; Sect. 3 present the proposedmodifications
in the simulator to support external traces and processing time; Sect. 4 shows the method-
ology and discussion of the evaluation for this work; Sect. 5 brings the final considerations
and future work ideas.

2 Noxim simulator

Noxim [9] is an open-source cycle-accurate simulator developed in C++ and integrated with
System-C for heterogeneous wired and wireless NoC architectures which estimates perfor-
mance and energy consumption. The simulator works with two main conceptual elements:
tile nodes and communication infrastructure. Tile nodes are computational or storage nodes.
The communication infrastructure consists of router(s) for each tile interconnected by wired
links with their neighbors and possibly the wireless hub element. The wireless hub is wired
connected with one or more tiles and wireless connected with other hubs. Therefore, the
simulator offers three communication patterns: tile-to-tile, tile-to-hub and hub-to-hub. Com-
munication is performed through packet split in small parts called flits.

The modeling of the NoC system is made in a human-readable configuration file in the
YAML format. The configuration parameters are organized in three groups: the wired NoC
configuration, thewireless setup and the simulation parameters. ThewiredNoC configuration
sets the dimension of the mesh, internal buffers, routing table, routing algorithm and strategy
for selection between multiple output directions. The wireless configuration sets the wireless
hub and their buffers, the channels with its data rate, policy of medium control access and
bit error rate. The simulation parameters set the clock period, time for reset, warm up time,
flag to wireless usage, flag to debug mode, output trace mode, packet sizes, packet injection
rate, probability of re-transmission and traffic distribution.

Even though simulate real applications on the original Noxim is possible, it is very hard
and not accurate. It is achieved throughmapping tasks communication graphs into customized
table-based format, with mandatory fields such as packet injection rate and probability of re-
transmission for each link. On the other hand, several critical parameters are not considered,
for example, message sizes.

Noxim simulator was upgraded and enhanced by several authors. Originally, it supported
only mesh topology, in [33], authors present an enhanced Noxim Simulator for performance
evaluation of other NoC topologies. They implemented the mesh, torus and twisted torus
topologies. These authors also proposed different routing algorithm to test the improvements.

123

44 I. L. P. Pires et al.

In [21], the Noxim was used together with QEMU to form a hardware/software co-
simulator for NoC. Each CPU core was simulated by QEMU and connected by a TCP
connection with the Noxim simulator. The Noxim simulator interacted with QEMU as the
processing elements were formed by CPU cores.

This Noxim extension is able to consider the PE processing time, support to MPI com-
munication and accept external traces as simple as possible. Thus, it allows researches to use
real communication traces providing more realistic results. In next section this add-ons are
presented in details.

3 Noxim extensions

This section presents our proposal to extend the Noxim simulator to support processing time
and external input traces.

3.1 Simulator modifications

Modifications focus on the YAML configuration file and inside the source code from the
simulator. The YAML configuration file modifications are the following:
traffic_distribution in the original Noxim, the traffic distribution can be set to random, trans-
pose, hot spot, table based, bit reversal, shuffle and butterfly. We extended this parameter to
add the traffic trace option to support external input traces.
traffic_trace_filename this parameter informs the name of input trace without the Processing
Element (PE) identification. For each PE in the system a respective trace file must exist even
if empty (in the case the PE has zero packages). For instance, a system with 4 PEs must have
the following traces 000_trace.txt, 001_trace.txt, 002_trace.txt and 003_trace.txt.
traffic_trace_flit_headtail_size this parameter informs the size of packages head and tail
(summed) for the modeled network technology. This feature helps the simulator to estimate
the data throughput considering the overhead of each communication technology.

To support the new parameters and the package generation described in the trace files,
multiple source code files were modified. Following we point each source code file and a
brief description of the modifications.
ConfigurationManager.cpp the loadConfiguration()method was altered to load the new con-
figuration parameters of the traffic trace from YAML file, and these new parameters are
validated in the checkConfiguration() method.
GlobalTrafficTrace.cpp new code file added to the simulation. It is responsible to receive the
input traces and carry them into the simulator.
Hub.cpp altered to fix memory leakages (present on the current version of Noxim). The
antennaToTileProcess() and the tileToAntennaProcess() methods contained memory alloca-
tion flaws which lead to system crash with huge trace files.
Noc.cpp a controller of input trace was added in the buildMesh() method, in such way the
simulator recognizes when all the input traces are complete so it can stop the simulation.
ProcessingElement.cpp this file receivedmost of ourmodifications. In the rxProcess()method
the traffic trace controller implements the stop trace criteria, which permits to stop the simu-
lation after all the traces from all PEs are sent. The traffic controller uses a queue to control
the buffered and transmitted flits, and it is used by rxProcess() and txProcess() methods. In
canShot()method, the loaded traces from each PE are executed, one by one, in the following
way: (a) verify the control flow if the flit can be shot; (b) if the control flow allows the shot, a

123

Trace-driven and processing time extensions for Noxim simulator 45

new packet will be created, formed by source and destination addresses, timestamp, payload
(message size plus head and tail size) and an eventual padding if the packet size is smaller
than the minimum packet size. Considering that the trace file can contain millions of lines,
we only generate the packages whenever the simulator can send it, reducing the memory
overhead of our proposal.

Furthermore, we remove the Noxim limitation allowing it to run simulation bigger than
2147 milliseconds. In order to achieve this we had to increase statistical and control variables
inside Noxim.

3.2 The input trace file format

In order to be as generic as possible, we choose to use a trace based on pure text format. The
new input trace mode and the trace file name must be informed in the YAML configuration
file. This file format is quite simple, each line should contain the name of the MPI primitive,
the initial and finish timestamp of primitive, the destination PE and the message size in bytes.
The message size considers only the useful payload without any protocol encapsulation and
MPI overhead. Note that the input trace does not contain the communication source as each
PE has its own trace file. The trace may have multiple lines to inform the full workload
(multiple messages to be sent).

The input trace format must follows:

<MPI_Primitive> <Start_Time> <End_Time> <Destination> <Message_Size>

For example:

MPI_Alltoall 192605257 256628513 15 4

The example shows the input format as follows: the Message Passing Interface (MPI)
primitive used isMPI_Alltoall, start time is 192605257nanoseconds, finish time is 256628513
nanoseconds, PE 15 is the destination and the message size is 4 bytes.

The name of the MPI primitive indicates the kind of primitive it is simulating. In this
extension of Noxim we implement the most used MPI primitives, presented in NPB bench-
mark, and a MPI synchronization barrier. The primitive type and its associated timestamp
are essential to simulate the processing time of the PEs.

3.3 MPI

The following MPI primitives are supported in this version:

– MPI_Allgather
– MPI_Allgatherv
– MPI_Allreduce
– MPI_Alltoall
– MPI_Alltoallv
– MPI_Bcast
– MPI_Gather
– MPI_Gatherv
– MPI_Reduce
– MPI_Scatter
– MPI_Scateerv

123

46 I. L. P. Pires et al.

– MPI_Send
– MPI_Isend

The MPI instrumentation manipulates the primitives registering the start time, the finish
time, origin, destination and size of the message. Only the thread which invokes the MPI
primitive uses the instrumentation. At the end of the primitive the registered information is
saved.

Primitives must be manipulated according to its characteristics, all-to-all, all-to-one or
one-to-all communication. All-to-all communication represents the following primitive: All-
gather, Allgatherv, Allreduce, Alltoall and Alltoallv. All-to-one communication represents
the MPI_Gather, MPI_Gatherv and MPI_Reduce primitives. One-to-all communication rep-
resents the MPI_Bcast, MPI_Scatter and MPI_Scatterv primitives.

All-to-one communications are implemented through a loop during the MPI communica-
tion delivering the message to all PEs. All-to-one communication does not need additional
coding. As all MPI communications are thread separated, the thread itself registers the
transmissions and saves the log in the file. One-to-all communications follows the same
implementation used in the all-to-all one, except that the loop is restricted to sender PE.

TheMPI_Send andMPI_Isend primitives are blocking ones. They indicate that the sender
gets blocked until it receives an ACK from the destination. Our implementation considers
that each PE has one incoming buffer, messages are maintained on it until sending the
acknowledgement. The MPI_Send blocks the processing and all communications of the PE,
while theMPI_Isend only blocks the communications. As ACKs can be piggybacked in other
messages or followed through control dedicated links, we chose to implement it virtually,
using a global simulator structure.

The MPI Barrier is used to synchronize the communications in a given moment. It was
included in the trace file to indicate the barrier timestamp for each PE. Upon detecting the
MPI_Barrier in the trace file, each PE raises a local flag indicating the barrier and increases
a global counter. The counter is shared by all threads, and indicates the number of blocked
PEs. When the counter indicates that all PEs are blocked all flags are reset and the PEs can
proceed with the communications.

3.4 Usage example

In order to fully understand the extension in the Noxim, we present a usage example to follow
step-by-step a synthetic trace simulation. In this examplewemodel aNoCcomposed by a 2×2
mesh two-dimensional topology (i.e. four processing elements). Each PE is connected to one
router, and the routers are interconnected to each other by a 32-bit wide wired link. Figure 1
illustrates this NoC topology. This topology is built declared inside the YAML configuration
file, creating the PE, routers, channels and hubs. The filename containing the routing table is
also defined and the table is loaded, here we consider that XY routing algorithm is defined.

Consider a trace file formed by 3 messages, one for each other PE present on the system
(similar to a broadcast behavior). Inside the configuration file, the base filename trace.txt for
the trace was also set for this example, enabling the PE-00 to load the trace file 00_trace.txt.
Each line of this trace is interpreted as a communication packet, formed by head, payload
and tail.

Whenever the simulation starts, the simulator will behave the following way: PE-00 will
load its trace file and retrieve the first packet information. The packet is prepared by adding
the head, payload and tail, it may also have padding to attend the minimal packet size (for
tiny payloads). Once the packet is ready to be sent, it is inserted inside the packet queue split

123

Trace-driven and processing time extensions for Noxim simulator 47

Fig. 1 NoC mesh example

in flits with 32 bits. Once the router becomes available, it will transmit the packet over the
NoC.

After sending the packet, the PE-00 will not send a new packet until the previous one was
received. This condition is part of what we call control flow in our proposal and depends on
acknowledge signal from the receiver so the sender can follow the trace. We believe that this
control creates a more realistic scenario, as it can be used to simulate the TCP behavior.

Upon receiving a packet, destination will check if the message refers to a blocking or
non-blocking primitive. Blocking communication refers to messages which require a strict
acknowledgement. While, non-blocking ones are messages which doe not required any
acknowledgement.

Using a very similar mechanism, this extension also implements the MPI_Barrier to
synchronize all PEs. Although several efforts to consider non-traditionalMPI communication
can be found in the literature, as streams for HPC application [27], this extension considers
only the tradition one, that is, the send-receive and collectives approaches.

During the packet transmission, the flits follow the routing present in the routing table
or the routing algorithm. Considering that we used an XY routing algorithm, it would mean
that first the flits would flow in the horizontal direction and then on vertical direction until
achieve the final destination. When modeling a wireless NoC where each router can be
connected or not to a wireless hub, this routing algorithm would be valid between the source
and the wireless hub, and from the wireless hub (from a different NoC) until the destination.
Moreover, depending on the configuration parameters, the routers may have input and output
buffers to store the incoming and outgoing flits.

Following the example, when the destination (PE-01) receives the packet coming from
PE-00 internally the simulator unlock the PE-00 to perform the next packet transmission (if
any left). Notice that any other PE (01, 02 and 03) can perform communications in parallel
to the PE-00. Whenever all the PEs fully performs the transmission of their trace files, the
simulator recognizes it and finishes the simulation.

3.5 Processing time

Another major advance in this version of Noxim is the simulation of the PEs processing time.
This eliminates the send-and-wait primitives used in our previous version.

The processing time of each packet is calculated as the difference between the final
timestamp of the packet and start timestamp of the next packet. In the following example the
MPI_Send primitive start at 2625852823 nanoseconds and end at 2625853538 nanoseconds,
while the MPI_Reduce start at 2704602479 and finish at 2704607248. This means that

123

48 I. L. P. Pires et al.

between 2625852823 and 2704602479 nanoseconds there is a processing time of 78749656
nanoseconds.

Upon scheduling a packet for transmission, the simulator verifies if there are more packets
to be sent. Then it calculates the processing time as previously mentioned. During this time
interval, the PE is busy and no new transmission schedule is allowed.

MPI_Send 2625852823 2625853538 2 4
MPI_Reduce 2704602479 2704607248 0 4

However, including the processing time in the simulation might imply in huge simulation
time for large workloads with high inter-message processing time. To overcome this issue,
we include a new feature to Noxim, Step Forward. Step Forward consist in fast forward
the simulation during PEs processing time to reduce the total simulation time cost. In each
simulation step two conditions are verified, i PE is in processing time; i i there are no flits on
the reception queue. If both conditions are satisfied the simulation is fast forwarded until the
time in which the first PE finishes the processing time. The fast forward time is accounted in
all scenarios.

4 Evaluation

This section brings a validation of the proposed extensions. In order to show the potential
of our proposal, we created a Message Passing Interface (MPI) wrapper inside the MPE2-
2.4.7 from MPICH implementation version 3.21. MPICH is a high-performance and widely
portable implementation of the Message Passing Interface (MPI) standard. During the appli-
cation execution, this wrapper can trace information regarding message size, origin and
destination split per thread basis. This wrapper writes in different trace files all the messages
sent by the different MPI processes which used the MPI primitives (i.e. send, isend, bsend,
bcast, gather, reduce, scatter, etc). Each timestamp was generated using the MPI_WTime
with nanosecond precision according to the MPI_WTick.

Thus we are able to simulation this MPI application as it was executing in a system
interconnected by different interconnections, such as 10Gbps Ethernet [22],Wireless Gigabit
[14], InfiniBand [17], Wireless Interconnection with Code Division Multiple Access [32]
and Wireless Interconnection Token-based [31]. We modeled each of these interconnection
standards as if they were the external link, which connects four NoC systems together. A
very brief explanation for each interconnection technology used in our evaluations is present
bellow:

Ethernet The Ethernet is a known wired connection widely used in local area networks. The
10 Gbps Ethernet standard differs from earlier Ethernet standards because it operates only
over fiber and in full-duplex mode [22]. The MAC parameters were maintained unaltered,
with themaximumandminimum frame size being 1518Band 64B, respectively. Considering
the head and tail, the minimum and maximum packet size is 72 B and 1526 B, respectively.

Wireless Gigabit The new Wireless Gigabit (WiGig) standard [36] is a wireless connection
that works at 60 GHz with four channels and each channel transmission rate varies between
7 Gb/s and 10 Gb/s. Although the specification of 60 GHz [36] reports that the information
may have 8 B at minimum size, considering the Protocol Adaptation Layer for wireless bus
extension [3], the packet payload field has variable size. The maximum packet contains the

1 The file /mpe2-2.4.7/src/wrappers/src/trace_mpi_core.c was instrumented to trace all the communication
messages sent by the MPI.

123

Trace-driven and processing time extensions for Noxim simulator 49

maximum payload size (128 B), plus overhead encapsulation (up to 16 B) and the Protocol
Adaptation Layer header is 4 B. Thus, the maximal packet size of the is 148 Bytes.

InfiniBand The InfiniBand is an architecture which supports a range of applications on the
backplane wired interconnection, such as the clustered hosts and I/O components. It works
at full duplex transmission between any two fabrics elements. For the data rate, this work
considers 50 Gb/s as predicted by authors for the year of 2017 [17]. The minimum payload
in is 256 B and the maximum is 4096 B, and their head and tail packet has 126 B. In this
way, the minimum packet size is 382 B and the maximum is 4222 B.

Wireless Network-on-Chip Wireless Interconnection with Code Division Multiple Access
(WI-CDMA) andWireless InterconnectionToken-based (WI-Token) are designed for a seam-
less hybrid wired and wireless interconnection network for multi-chip systems. Nevertheless,
[32] proposes the use of CDMA achieving only 6 Gb/s in the wireless link, [31] uses a token
based collision avoidance method reaching 16 Gb/s. In both, the packet size is fixed in 256 B
and the payload, head and tail size was not informed.

4.1 NAS-NPBworkload

After creating the MPI wrapper proper to trace all the communication from MPI workloads.
Weused theNASParallelBenchmark (NPB)3.3-MPI suite asworkload to generate our traces.
This benchmark suite contains MPI parallel applications that solves numerical methods for
aerodynamic simulation problems. The following NPB applications run double-precision
floating-point and were written in FORTRAN: Block Tri-diagonal (BT), Conjugate Gradient
(CG), Fast Fourier Transform (FT), Lower and Upper triangular system (LU), Multigrid
(MG) and Scalar Pentadiagonal (SP); while application Data Traffic (DT) and Integer Sort
(IS) were written in C and uses mainly integer and logical operations. The more details for
each application can be found in [34], the impact of NPB workload in NoC architectures are
presented in [13] and their pattern communication in [10].

4.2 Metrics and parameters

The main metric used in this experimentation is the total execution time in nanoseconds. A
secondary metric is the communication overhead in bytes. These metrics are the best ones
to depict the contribution of this work.

The applications fromNPB suite have different problem sizes (benchmark classes) named
in ascending order as S, W, A, B, C and D [34]. Our evaluations used the problem size A,
which is the most used in real machine tests, due to its medium size and reasonable execution
time to be evaluated in a simulated environment. Each NPB application have a different
communication pattern, already published in different papers [4,12].

The first test considers only the MPI support to obtain the communication performance
with blocking andnon-blocking primitives andbarrier of synchronization. This test also varies
the number of PEs in each system using four mesh size 2× 2, 3× 3, 4× 4 and 5× 5. Note
that, mesh size was chosen accordingly to NPB applications which require square numbers
of threads.

The second one aims to test the impact of processing time on systems performance. For
this test, the MPI support was maintained and included the processing time. To reduce the
number of simulated parameters, the number of threads was set to sixteen consisting of four
systems with 2× 2 mesh size each, with a total of 16 PEs executing all workload.

123

50 I. L. P. Pires et al.

Table 2 Network parameters

Parameter Ethernet Wireless
Gigabit

InfiniBand WiNoc
CDMA-based

WiNoC
Token-based

Head and tail 26 4 126 – –

Minimum payload 46 4 256 – –

Maximum payload 1500 144 4096 – –

Smallest packet 72 8 382 256 256

Largest packet 1526 148 4222 256 256

Data rate (Gb/s) 10 8 50 6 16

All units are expressed in bytes except Data Rate

TheTable 2 shows the parameters for each network interconnection evaluated in this paper.
These parameters are the input values to setup the YAML configuration file for Noxim sim-
ulator (extended version). The simulation of each system was performed with these different
parameters to allow a network technology comparison on NoC architecture.

The parameters of Table 2 were chosen because of their impact on communication over-
head. Head and tail are always included in each packet. If message size is smaller than the
minimum payload padding must be included. If message size is larger than the maximum
payload, message must be split in more than one packet with additional head and tail fields.
Lastly, data rate directly affects the network performance.

4.3 Results and discussion

Table 3 shows the communication overhead for each interconnection network in order to
process the messages from the NPB applications. This overhead were obtained as the differ-
ence between the payload to send and received bytes for each application. The received bytes
were obtained as part of the simulation results. In this table, the columns WI-CDMA and
WI-Token are exactly the same as these connections have the same minimum and maximum
package size. It is possible to observe that WiGig has a tiny overhead compared with others
for all NPB applications while the InfiniBand has the highest one on average due to the
minimum packet size restriction.

Table 3 Overhead for NPB applications

Apps. Total Payload (B) Ethernet
(%)

Wireless
Gigabit (%)

InfiniBand
(%)

Wi-CDMA
(%)

Wi-Token
(%)

BT 1.766.806.620 1.79 2.79 3.39 1.59 1.59

CG 256.366.712 2.58 2.84 7.60 1.64 1.64

FT 251.658.900 1.75 2.78 3.10 1.64 1.64

IS 360.334.860 1.80 2.78 3.69 1.59 1.59

LU 730.982.856 3.89 3.13 15.11 1.91 1.91

MG 103.673.604 3.19 2.87 12.01 1.69 1.69

SP 2.961.299.748 1.82 2.79 3.47 1.60 1.60

123

Trace-driven and processing time extensions for Noxim simulator 51

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

16 36 64 100

sn
ni

e
mit

noi tu cexE

Number of PEs

Ethernet WiGig Infiniband WI-CDMA Wi-Token

Fig. 2 Simulation of increasing the mesh size executing bt application

0
50000000

100000000
150000000
200000000
250000000
300000000
350000000
400000000
450000000
500000000

16 36 64 100

Ex
ec

u�
on

 �
m

e
in

 n
s

Number of PEs

Ethernet WiGig Infiniband WI-CDMA Wi-Token

Fig. 3 Simulation of increasing the mesh size executing SP application

Figures 2, 3 and 4 show the performance while increasing number of PEs to execute BT,
SP and LU application. It is possible notice that there is a linear growth of execution time. BT
and SP applications have similar performance behavior, in both theWi-Token and Infiniband
have better results. Considering LU application it changes, as WiGig and Ethernet present
better results. This is due to the traffic shape of the applications. Application with few larger
messages have better performance on Infiniband. On the other hand, applications with a high
number of small messages present better results with Ethernet and WiGig.

Figures 5 and 6 show the total execution time considering the processing time of the PEs
and the different transmission of all messages through the different interconnection for the
workload applications. The different workloads are separated in two Figures due to the scale
difference. Results are expressed in nanoseconds.

123

52 I. L. P. Pires et al.

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

16 36 64 100

sn
me oãçuce xe e d o p

meT

Número de PEs

Ethernet WiGig Infiniband WI-CDMA Wi-Token

Fig. 4 Simulation of increasing the mesh size executing LU application

6.
65

6.
31

8.
31

6

4.
99

9.
91

5.
45

3

4.
91

7.
95

6.
99

3

6.
65

6.
30

7.
15

2

4.
99

9.
88

1.
99

0

4.
91

7.
94

9.
34

6

6.
65

6.
16

5.
01

1

4.
99

9.
95

9.
44

5

4.
91

7.
82

4.
70

8

6.
65

6.
48

2.
03

4

4.
99

9.
99

7.
70

3

4.
91

8.
21

7.
43

8

6.
65

6.
17

1.
04

9

4.
99

9.
92

7.
62

9

4.
91

7.
81

9.
50

5

0

1.000.000.000

2.000.000.000

3.000.000.000

4.000.000.000

5.000.000.000

6.000.000.000

7.000.000.000

BT LU SP

)sn(
e

mit
noi t ucexel atoT

Ethernet WiGig Infiniband Wi-CDMA WI-Token

Fig. 5 Total simulation time for BT, LU and SP workloads

67
9.

94
3.

61
5

21
1.

64
5.

44
2

20
7.

70
1.

24
7

38
5.

77
9.

03
767

9.
94

3.
55

1

21
1.

60
4.

55
3

20
7.

70
1.

24
7

38
5.

51
7.

83
267

9.
94

3.
52

3

21
1.

25
1.

86
4

20
7.

70
1.

24
2

38
5.

72
4.

95
267

9.
94

3.
92

7

21
2.

25
5.

00
6

20
7.

70
1.

24
7

38
7.

68
8.

90
267

9.
94

3.
67

1

21
1.

20
7.

15
9

20
7.

70
1.

24
7

38
6.

02
0.

84
2

0

100.000.000

200.000.000

300.000.000

400.000.000

500.000.000

600.000.000

700.000.000

800.000.000

FT CG IS MG

)sn(e
mit noi tucexe latoT

Ethernet WiGig Infiniband Wi-CDMA WI-Token

Fig. 6 Total simulation time for FT, CG, IS and MG workloads

123

Trace-driven and processing time extensions for Noxim simulator 53

3.
61

1.
58

0

53
.1

44

70
5.

20
7

1.
01

0.
03

0

13
8.

57
6

18
7.

38
7

4.
98

7.
78

0

4.
12

2.
84

0

56
.4

86 1.
00

6.
77

0

1.
44

1.
89

0

19
2.

36
9

26
2.

18
6

6.
99

9.
89

0

1.
03

9.
57

0

20
.5

55

20
3.

33
7

29
2.

53
1

45
.0

30

60
.7

22

1.
73

9.
44

0

5.
15

5.
55

0

96
.0

63 1.
10

8.
73

4

1.
58

8.
68

8

21
4.

92
0

31
3.

85
4

8.
63

9.
45

0

2.
06

2.
22

0

35
.0

01

40
3.

25
0

57
8.

31
6

78
.5

74

11
4.

46
5

3.
45

5.
78

0

0

1.000.000

2.000.000

3.000.000

4.000.000

5.000.000

6.000.000

7.000.000

8.000.000

9.000.000

BT CG FT IS LU MG SP

)sn(e
mit n oit ucexE

Ethernet WiGig Infiniband Wi-CDMA WI-Token

Fig. 7 Previous simulation results without processing time and MPI support

Figure 7 depicts the results without the extensions proposed in this version. It is possible
to compare the actual results (Figs. 5 and 6) and the previous ones (Fig. 7) and see a clear
accuracy difference. This is the processing time effect, which make the actual extensions
much closer to the real world. Results are expressed in nanoseconds.

As can be seen in the presented results, the processing time of the workload is much higher
than the communication time. This time was hidden in all Noxim simulations. Obviously,
if the processing time is constant for the different scenarios, it is possible to simply ignore
it and compare the other results. However, if the processing time is one of the key facts
that must considered in the simulation, it is essential to consider it. With this version of the
Noxim, we are allowing researchers to use the correct tool, with or without the processing
time. Nevertheless, researches must have in mind that using the processing time may hide
other results, as shown before. In any case, this work brings the simulation results closer to
the real world, by allowing users to choose additional parameters on their simulations.

5 Conclusions and future work

Simulation is one of the main tool used to analyze new proposals in the Network-on-Chip
field. Among all proposed simulators, the Noxim simulator stands out due to its accuracy
near to a real system. However, traces of real applications were not easily supported by the
trace table method (present on Noxim), which requires the researcher to inform the general
behavior of the system (traffic injection rate) not even considering the packet size parameter.
However, suchmethod presents clear limitations tomodel more close to application behavior.

In this work, we extend the Noxim simulator to support MPI primitives and consider the
PE processing time. We performed this extension by modifying the Noxim source code files.
A list of the files and required modification was presented together with a validation of these
changes.

Our validation was based on the simulation of messages from real application modelled
over different interconnection systems. The performance results fits to the overhead estimates
using analytical formulas that consider the minimum packet size, head and tail overheads. In
this way, the presented Noxim extension will help researchers during performance tests of
new proposals through real application traces. Future work includes the support of wireless
broadcast, virtual channels for communication and improvement in the deadlock avoidance.

123

54 I. L. P. Pires et al.

References

1. Abad P, Prieto P, Menezo LG, Colaso A, Puente V, Gregorio JA (2012) Topaz: an open-source inter-
connection network simulator for chip multiprocessors and supercomputers. In: 2012 IEEE/ACM sixth
international symposium on networks-on-chip, pp 99–106. https://doi.org/10.1109/NOCS.2012.19

2. Agarwal N, Krishna T, Peh LS, Jha NK (2009) Garnet: A detailed on-chip network model inside a
full-system simulator. In: 2009 IEEE international symposium on performance analysis of systems and
software, pp 33–42. https://doi.org/10.1109/ISPASS.2009.4919636

3. Alliance W (2014) Wi-fi alliance wigig wireless bus extension technical specification. www.wi-fi.org.
Accessed 10 Sept 2016

4. BaileyD,Harris T, SaphirW, van derWijngaart R,WooA,YarrowM(1995)TheNASparallel benchmarks
2.0. Tech. rep., NAS Technical Report, NAS-95-020

5. Ben-Itzhak Y, Zahavi E, Cidon I, Kolodny A (2011) Nocs simulation framework for omnet++. In: Pro-
ceedings of the fifth ACM/IEEE international symposium, pp 265–266. https://doi.org/10.1145/1999946.
1999993

6. Ben-Itzhak Y, Zahavi E, Cidon I, Kolodny A (2012) Hnocs: modular open-source simulator for hetero-
geneous nocs. In: 2012 international conference on embedded computer systems (SAMOS), pp 51–57.
https://doi.org/10.1109/SAMOS.2012.6404157

7. Benini L, Micheli GD (2002) Networks on chips: a new soc paradigm. Computer 35(1):70–78. https://
doi.org/10.1109/2.976921

8. Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T,
Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The gem5 simulator.
SIGARCH Comput Archit N 39(2):1–7. https://doi.org/10.1145/2024716.2024718

9. Catania V, Mineo A, Monteleone S, Palesi M, Patti D (2015) Noxim: An open, extensible and cycle-
accurate network on chip simulator. In: 2015 IEEE 26th international conference on application-specific
systems, architectures and processors (ASAP), pp 162–163. https://doi.org/10.1109/ASAP.2015.7245728

10. da Cruz EHM, Alves MAZ, Carissimi A, Navaux POA, Ribeiro CP, Mehaut JF (2011) Using memory
access traces to map threads and data on hierarchical multi-core platforms. In: 2011 IEEE international
symposium on parallel and distributed processing workshops and Ph.d. Forum, pp 551–558. https://doi.
org/10.1109/IPDPS.2011.197

11. Deb S, Ganguly A, Pande PP, Belzer B, Heo D (2012) Wireless noc as interconnection backbone for
multicore chips: promises and challenges. IEEE J Emerg Sel Top Circuits Syst 2(2):228–239. https://doi.
org/10.1109/JETCAS.2012.2193835

12. Diener M, Cruz EH, Pilla LL, Dupros F, Navaux PO (2015) Characterizing communication and page
usage of parallel applications for thread and data mapping. Perform Eval 88–89:18–36. https://doi.org/
10.1016/j.peva.2015.03.001

13. de Freitas HC, Schnorr LM, Alves MAZ, Navaux POA (2010) Impact of parallel workloads on noc archi-
tecture design. In: 2010 18th euromicro conference on parallel, distributed and network-based processing,
pp 551–555. https://doi.org/10.1109/PDP.2010.53

14. Hansen CJ (2011) WiGiG: multi-gigabit wireless communications in the 60 GHz band. IEEE Wirel
Commun 18(6):6–7. https://doi.org/10.1109/MWC.2011.6108325

15. Hestness J, Grot B, Keckler SW (2010) Netrace: Dependency-driven trace-based network-on-chip sim-
ulation. In: Proceedings of the third international workshop on network on chip architectures, NoCArc
’10, ACM, New York, NY, pp 31–36. https://doi.org/10.1145/1921249.1921258

16. Hossain H, AhmedM, Al-NayeemA, Islam TZ, AkbarMM (2007) Gnocsim–a general purpose simulator
for network-on-chip. In: International conference on information and communication technology

17. InfiniBand Trade Association and others: InfiniBand Architecture Specification, release 1.0 (2000). www.
infinibandta.org. Accessed 23 Oct 2016

18. Jain Lavina, Al-Hashimi BM, Gaur MS, Laxmi V, Narayanan A (2007) NIRGAM: a simulator for NoC
interconnect routing and application modeling. In: Design, automation and test in Europe conference

19. Jain Raj (1990) The art of computer systems performance analysis: techniques for experimental design,
measurement, simulation, and modeling. Wiley, London

20. Jiang N, Balfour J, Becker DU, Towles B, Dally WJ, Michelogiannakis G, Kim J (2013) A detailed
and flexible cycle-accurate network-on-chip simulator. In: 2013 IEEE international symposium on per-
formance analysis of systems and software (ISPASS), pp 86–96. https://doi.org/10.1109/ISPASS.2013.
6557149

21. KurimotoY, FukutsukaY,Taniguchi I, TomiyamaH (2013)Ahardware/software cosimulator for network-
on-chip. In: 2013 international SoC design conference (ISOCC), pp 172–175. https://doi.org/10.1109/
ISOCC.2013.6863964

22. LAN/MAN Standards Committee: IEEE Standard for Ethernet. IEEE Std 802.3-2015 (2016)

123

https://doi.org/10.1109/NOCS.2012.19
https://doi.org/10.1109/ISPASS.2009.4919636
www.wi-fi.org
https://doi.org/10.1145/1999946.1999993
https://doi.org/10.1145/1999946.1999993
https://doi.org/10.1109/SAMOS.2012.6404157
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/2.976921
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/ASAP.2015.7245728
https://doi.org/10.1109/IPDPS.2011.197
https://doi.org/10.1109/IPDPS.2011.197
https://doi.org/10.1109/JETCAS.2012.2193835
https://doi.org/10.1109/JETCAS.2012.2193835
https://doi.org/10.1016/j.peva.2015.03.001
https://doi.org/10.1016/j.peva.2015.03.001
https://doi.org/10.1109/PDP.2010.53
https://doi.org/10.1109/MWC.2011.6108325
https://doi.org/10.1145/1921249.1921258
www.infinibandta.org
www.infinibandta.org
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISPASS.2013.6557149
https://doi.org/10.1109/ISOCC.2013.6863964
https://doi.org/10.1109/ISOCC.2013.6863964

Trace-driven and processing time extensions for Noxim simulator 55

23. Lis M, Shim KS, Cho MH, Ren P, Khan O, Devadas S (2010) DARSIM: a parallel cycle-level NoC
simulator. In: Workshop on modeling, benchmarking and simulation

24. Lu Z, Thid R, Millberg M, Jantsch A (2005) NNSE: nostrum network-on-chip simulation environment.
In: Swedish system-on-chip conference

25. Micheli GD, Benini L (2017) Networks on chips: 15 years later. Computer 50(5):10–11. https://doi.org/
10.1109/MC.2017.140

26. Nakajima K, Kurebayashi S, Fukutsuka Y, Hieda T, Taniguchi I, Tomiyama H, Takada H (2013) Naxim: a
fast and retargetable network-on-chip simulatorwith qemu and systemc. Int JNetwComput 3(2):217–227.
https://doi.org/10.15803/ijnc.3.2_217

27. Peng IB, Markidis S, Gioiosa R, Kestor G, Laure E (2017) Mpi streams for hpc applications. N Front
High Perform Comput Big Data 30:75

28. Pires ILP, Alves MAZ, Albini LCP (2017) Trace-driven extension for noxim simulator. In: 2017 VII
Brazilian symposium on computing systems engineering (SBESC), pp 102–108. https://doi.org/10.1109/
SBESC.2017.20

29. Ren P, LisM, ChoMH, ShimKS, Fletcher CW, KhanO, Zheng N, Devadas S (2012) Hornet: a cycle-level
multicore simulator. IEEE Trans Comput-Aided Des Integr Circuit Syst 31(6):890–903. https://doi.org/
10.1109/TCAD.2012.2184760

30. Riley George F, Henderson Thomas R (2010) The ns-3 network simulator. Springer, Berlin
31. Shamim MS, Mansoor N, Narde RS, Kothandapani V, Ganguly A, Venkataraman J (2017) A wireless

interconnection framework for seamless inter and intra-chip communication in multichip systems. IEEE
Trans Comput 66(3):389–402. https://doi.org/10.1109/TC.2016.2605093

32. Shamim MS, Muralidharan J, Ganguly A (2015) An interconnection architecture for seamless inter and
intra-chip communication using wireless links. In: Proceedings of the 9th international symposium on
networks-on-chip, NOCS ’15, ACM, New York, NY, USA, pp 2:1–2:8. https://doi.org/10.1145/2786572.
2786581

33. SwaminathanK,ThakyalD,Nambiar SG,LakshminarayananG,KoSB (2014)Enhanced noxim simulator
for performance evaluation of network on chip topologies. In: 2014 recent advances in engineering and
computational sciences (RAECS), pp 1–5. https://doi.org/10.1109/RAECS.2014.6799570

34. VanderWijngaart RF, Haopiang J (2003) NAS Parallel benchmarks, multi-zone versions, NAS Technical
Report

35. Wang C, HuWH, Bagherzadeh N (2011) A wireless network-on-chip design for multicore platforms. In:
2011 19th international euromicro conference on parallel, distributed and network-based processing, pp
409–416. https://doi.org/10.1109/PDP.2011.37

36. WiFi Alliance: 60 GHz Technical Specification v1.0 (2017). www.wi-fi.org. Accessed 10 Sept 2016
37. Wilton SJE, Jouppi NP (1996) Cacti: an enhanced cache access and cycle time model. IEEE J Solid-State

Circuits 31(5):677–688. https://doi.org/10.1109/4.509850

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1109/MC.2017.140
https://doi.org/10.1109/MC.2017.140
https://doi.org/10.15803/ijnc.3.2_217
https://doi.org/10.1109/SBESC.2017.20
https://doi.org/10.1109/SBESC.2017.20
https://doi.org/10.1109/TCAD.2012.2184760
https://doi.org/10.1109/TCAD.2012.2184760
https://doi.org/10.1109/TC.2016.2605093
https://doi.org/10.1145/2786572.2786581
https://doi.org/10.1145/2786572.2786581
https://doi.org/10.1109/RAECS.2014.6799570
https://doi.org/10.1109/PDP.2011.37
www.wi-fi.org
https://doi.org/10.1109/4.509850

	Trace-driven and processing time extensions for Noxim simulator
	Abstract
	1 Introduction
	2 Noxim simulator
	3 Noxim extensions
	3.1 Simulator modifications
	3.2 The input trace file format
	3.3 MPI
	3.4 Usage example
	3.5 Processing time

	4 Evaluation
	4.1 NAS-NPB workload
	4.2 Metrics and parameters
	4.3 Results and discussion

	5 Conclusions and future work
	References

