
Saving Memory Movements Through
Vector Processing in the DRAM

Marco A. Z. Alves, Paulo C. Santos, Francis B. Moreira, Matthias Diener, Luigi Carro
Informatics Institute – Federal University of Rio Grande do Sul – Porto Alegre, Brazil

{mazalves, pcssjunior, fbmoreira, mdiener, carro}@inf.ufrgs.br

ABSTRACT
Despite the ability of modern processors to execute a variety
of algorithms efficiently through instructions based on regis-
ters with ever-increasing widths, some applications present
poor performance due to the limited interconnection band-
width between main memory and processing units. Near-
data processing has started to gain acceptance as an ac-
celerator device due to the technology constraints and high
costs associated with data transfer. However, previous ap-
proaches to near-data computing do not provide general-
purpose processing, or require large amounts of logic and do
not fully use the potential of the DRAM devices. These is-
sues limited its wide adoption. In this paper, we present the
Memory Vector Extensions (MVX), which implement vec-
tor instructions directly inside the DRAM devices, therefore
avoiding data movement between memory and processing
units, while requiring a lower amount of logic than previ-
ous approaches. MVX is able to obtain up to 211× increase
in performance for application kernels with a high spatial
locality and a low temporal locality. Comparing to an em-
bedded processor with 8 cores and 2 memory channels that
supports AVX-512 instructions, MVX performs 24× faster
on average for three well known algorithms.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures—Design Styles

Keywords
Near-data computing, data movement, vector instructions

1. INTRODUCTION
For decades, the slow advancements of main memory tech-

nology and manufacturing processes have been overshad-
owed by Moore’s law on processor manufacturing technol-
ogy. As smaller transistors paved the way for ever-faster

We acknowledge the support of CNPq and CAPES.

.

processing units, the same could not be done for memory
devices, which have different trade-offs and design points
[24, 22, 25]. This led to a performance gap between pro-
cessing units and memory devices due to the high latency
to fetch data from memory devices and the interconnection
bottleneck between them.

Current processors require access to large amounts of data
due to the increasing number of cores and the trend towards
vector instructions (NEON, SSE, and AVX, among others).
To deliver data and enable efficient use of processor cores,
the industry started to provide multiple data channels and
memory controllers, introducing parallelism between mem-
ory modules and therefore higher bandwidths. For embed-
ded systems, the increase on the number of memory chan-
nels must be carefully considered since the energy consumed
by multiple data buses and memory controllers can conflict
with energy constraints.

A different approach to solve this issue is to move compu-
tation closer to the data, reducing the latency and energy
to transfer data between memory and processor. This ap-
proach has a higher potential for applications with a low
temporal locality. Algorithms that present low data reuse
reduce the effectiveness of the cache memory, as they stream
large data sets and evict data from caches with no reuse. For
algorithms that also present high spatial locality, near-data
computation has even higher potential by exploring the in-
herent spatial locality of the DRAM devices’ row buffers.

Some of the previous work on near-data computing only
proposed application-specific logic embedded inside or near
the memory [28, 23, 27]. Others proposed to include full
multi-core processors inside the memory module [19, 20],
requiring a large amount of logic. Furthermore, only a few
of the previous proposals use the full potential bandwidth
from the memory arrays [9, 27].

In this paper, we presentMemory Vector Extensions (MVX),
a new mechanism that implements a set of vector instruc-
tions inside the DRAM to perform near-data computing.
The MVX implements a set of Functional Units (FUs) in-
side the DRAM devices and uses data provided directly by
the rows of each memory bank. Through this approach, our
mechanism is able to access large amounts of data simulta-
neously, and execute vector instructions on this data with a
large parallelism to provide a better use of the data width
available in memory devices.

Using MVX enables the processor to delegate operations
to the memory over large data sets with high performance.
MVX is designed to outperform normal processor vector in-
structions for algorithms that present high spatial locality

978-1-4673-8320-2/15/$31.00 ©2015 IEEE 117

and low temporal locality, such as stream applications. This
is because such applications cannot benefit from cache mem-
ories inside the processors to hide memory access latency.
Our mechanism requires small modifications to the proces-
sor and the memory sub-system, but it does not degrade the
normal processor operation. MVX has the following main
features:
High performance: We identify and evaluate the gains
that can be achieved when bypassing the interconnection
bottleneck and performing vector operations directly inside
the DRAM. By accessing the full row buffer width, our
mechanism can achieve substantial improvements of stream-
ing application kernels’ performance.
Low logic overhead: Our mechanism requires vector units
and a register bank inside the DRAM devices, additions
which represent less hardware than previous proposals. We
describe the required system modifications to implement our
vector instructions extension inside the DRAM devices.
General-purpose design: MVX seamlessly integrates into
current general-purpose systems, requiring few binary mod-
ifications, which can be easily generated by the compiler.
With a small vector ISA extension provided by the proces-
sor, our mechanism enables execution of special instructions
decoded by the processor inside the memory devices. For ap-
plication kernels that do not use our mechanism, the system
behavior is unchanged.
Flexible implementation: Our mechanism can be imple-
mented in different ways depending on hardware constraints,
such as latency, area and energy consumption. For exam-
ple, by varying the number of FUs that operate in parallel,
a trade off between area and latency can be achieved.

In our evaluation, we show how our mechanism behaves
for three application kernels with different behaviors. We
compare our mechanism to the use of multi-core vector in-
structions, extrapolating the number of cores and memory
channels. Variations of the mechanism’s parameters are pre-
sented in order to evaluate compiler improvements and also
the different operation latency trade-offs.

MVX is up to 211× faster than the normal embedded
single-core processor that supports Streaming SIMD Exten-
sions (SSE) instructions with a single memory channel for
application kernels with high spatial locality and low tem-
poral locality. For the worst-case evaluated, which contains
a high amount of data reuse, our mechanism is up to 20×
faster. Comparing our single-threaded approach to an 8-core
embedded architecture that supports Advanced Vector Ex-
tensions (AVX) instructions with 2 memory channels, our
mechanism is 60× and 3× faster for the best and worst-
case application kernels evaluated, respectively. Compared
to previous work that performs near-data computing, MVX
is on average 10× faster with a comparable overhead.

This paper is organized as follows: The next Section dis-
cusses previous work on near-data computation and com-
pares it to our proposal. Section 3 details current DRAM
devices and analyzes their technological constraints. Sec-
tion 4 presents and discusses our proposed mechanism. Sec-
tion 5 shows performance results for our mechanism com-
pared to an embedded multi-core processor, as well as pre-
senting baseline extrapolations to fully evaluate our mech-
anism. We also compare performance improvements and
overhead to a previously proposed technique. Section 6 sum-
marizes our conclusions and mentions ideas for future work.

2. RELATED WORK
Several studies have addressed near-data computation, gen-

erally aiming to reduce the costs related to data transfer be-
tween the processing units and DRAM. Since off-chip data
movement is a major bottleneck for computer systems [25],
the main goals are usually increasing performance and re-
ducing energy consumption. Table 1 presents an overview
of the characteristics of the related work and our proposal
(MVX) presented in this section. MVX provides general
purpose processing capabilities while requiring a reasonable
amount of embedded logic to operate on a high data band-
width.

Table 1: Summary of related work characteristics.

Mechanism Small High General No source
name logic bandwidth purpose code changes

IRAM [19] • •
C-RAM [9] • • •
NMP [23] •
LiM [27] • •
DRAMA [10] • •
NDCores [20] •
MVX • • • •

The Intelligent RAM (IRAM) [19] approach aims to in-
crease the accessible data width by implementing more mem-
ory ports and data buses. To efficiently use this large band-
width, the authors propose to implement a vector processor
inside the DRAM module, where this processor is able to
access the vector operands directly from RAM through the
extra ports. IRAM extrapolates the system with up to 16
ports of 1024 bits, claiming that it is possible to accelerate
the execution and simultaneously reduce energy consump-
tion. However, [6] shows that not only does it require a large
amount of logic, the approach taken in IRAM could quickly
become obsolete for faster processors since it depends on
extra buses and memory ports.

Elliot et al. [9] present the Computational-RAM (C-RAM),
a proposal that resembles ours, with some important differ-
ences. In their proposal, multiple functional units are in-
serted together with the sense amplifiers, computing at the
bit level. Considering that a DRAM device activates only a
few memory sub-arrays per request, to control and power on
all data rows and processing elements instantaneously rep-
resents a substantial constraint. Moreover, their technique
requires a large number of functional units, coupled to ev-
ery sense amplifier in the memory sub-arrays [15] (in our
proposal we have a set of vector units per device, shared
among all the row buffers). Finally, the C-RAM mechanism
requires a very specific memory mapping of the application’s
data by the OS.

In [23], the authors present the Near Memory Processor
(NMP), implementing an in-order 2-issue wide co-processor
between processor/cache and main memory. Although this
approach is limited by memory controller bandwidth, NMP
presented has its own local large width scratchpad memory
which enables data accesses with a high bandwidth. Despite
the higher performance, the data width managed between
main memory and NMP is limited to the original memory
bus, maintaining compatibility with current architectures.
The performance is also limited by the fact that the pro-
posed architecture must fill the scratchpad memory before
processing, an operation which depends on the memory and

118

Table 2: Comparison of previous near-data computation proposals.

Mechanism Type of processing Number of Internal Logic Data Data Integration
name elements elements memory frequency width frequency technology

IRAM [19] In-Order + Vector proc. 1 per module Reg. + Caches DRAM 8x Bus DRAM DRAM module
C-RAM [9] Functional Units 1 per sense amp. 3 Registers DRAM Arrays × Row buffers DRAM DRAM device
NMP [23] In-Order BMT 1 per mem. ctrl. Reg. + Scratchpad Core Channel Bus Processor die
LiM [27] ASIC 1 per device I/O FIFO Bus Bank column DRAM DRAM device
DRAMA [10] CGRA 1 per device I/O FIFO Bus Bank column DRAM DRAM device
NDCores [20] In-Order 4 per device Reg. + Caches Core Device Bus DRAM module

MVX Vector FUs 1 set per device Register bank DRAM Row buffer DRAM DRAM device

interconnection performance, which are well-known bottle-
necks. Moreover, the programmer must carefully control the
content of the scratchpad memory. The architecture pre-
sented in [8] also integrates processing elements between the
processor/cache and the DRAM memory. Such mechanisms
outside the processor also require specific address transla-
tion hardware to perform operations over the correct data
inside the DRAM.

Taking advantage of die-stack technology, Zhu et al. [27]
present a 3D-DRAM customized logic layer capable of ac-
celerating application-specific data intensive computation.
FFT and SpGEMM Application Specific Integrated Circuits
(ASICs) were implemented as a 3D-DRAM layer with com-
munication using Through-Silicon Via (TSV). The authors
claim bandwidths of up to 668.4 GB/s when 16 banks and
1024 TSVs per bank are used to connect the proposed ASIC
to the row buffers. The proposed mechanism does not sup-
port general purpose computations, which is the focus of our
work.

In [10], the authors present a solution where Coarse-Grain
Reconfigurable Arrays (CGRAs) are implemented on top of
the memory devices using TSV technology. This approach
accesses the data from global I/O (that is, the bus after the
Double Data Rate (DDR) I/O gating) using TSV, being able
to execute instructions over these data. The benefits emerge
from the efficient data transmission system from memory
devices to the proposed buffers and CGRAs. However, this
approach does not use the full data bandwidth inside the
DRAM devices.

In the work presented in [20], processor cores (NDCores)
are inserted in the DRAM memory modules. In this ap-
proach, the authors inserted one low-power quad-core pro-
cessor for each DRAM device in a memory module, with the
logic outside the DDR device. Similar to the work presented
in [10], each processor can access the data width presented
at columns of each DRAM device, which represents less than
1% of the row buffer size. This small bandwidth limits the
amount of data that can processed in parallel. This work
provides a comparison with multi-core processors, present-
ing significant performance gains and energy savings.

Some proposals [5, 21] consider using the Hybrid Memory
Cubes (HMCs) due to their great advantages in performance
when compared to regular DRAM modules. In [21], the
NDCores mechanism is extended to embedding processor
cores inside the HMC, enabling low latency data access. The
authors assume that each NDCore operates exclusively on
their respective private memory space (256 MB in this case).
The NDCores achieve performance mostly because they are
not limited by the HMC to processor link bandwidth, and
being able to nearly saturate the bandwidth inside the HMC
device for the shown applications. These proposals require

specific features from HMC while our technique can work
with commodity DRAM devices.

Table 2 shows a comparison between the main near-data
computation proposals. The first four columns present the
processing element details considered in each proposed im-
plementation. It can be seen that most approaches require
full multi-core processors close to the DRAM devices [20,
23], showing that most previous work relies on a large amount
of logic. Moreover, most of previous proposals use the same
data bandwidth present outside the memory devices or mem-
ory modules (that is, smaller than the row buffer width).
The fifth and sixth column present the data bandwidth re-
lated characteristics of each proposal, showing that only few
previous proposals consider to access the full row buffer [9,
27]. The seventh column shows how close to the memory
the proposals are implemented. In general, as the proposed
processing elements are more complex, the farther from the
memory device they are placed. This implies a bandwidth
reduction and more data movement.

3. TECHNOLOGICAL CONSTRAINTS OF
MEMORY DESIGNS

The main memory of current systems is a known perfor-
mance bottleneck. Furthermore, it is a large contributor to
a system’s power consumption, especially for embedded sys-
tems, which have stringent restrictions. In this Section, we
present the architecture of the DRAM devices and explore
the sources of inefficiency of the main memory, motivating
our approach to integrate functional units directly inside the
DRAM devices. The DRAM system is presented at a level of
abstraction that is sufficient to understand the terminology
and key concepts of this paper. For a detailed description,
we refer the reader to [7, 14].

3.1 DRAM Implementation Details
Traditional main memory modules are formed by multi-

ple devices that act in a coordinated way [14]. The highest
level memory structure is the module, which consists of a
set of devices. A module may have multiple ranks, each
rank consisting of multiple devices, which will operate in
synchrony. The devices are composed of a set of banks, and
all the devices in a given rank react to an operation signal,
always operating in the same bank for a given signal. These
banks are composed of sub-arrays, formed by rows that are
accessed per column. The DRAM protocol manages these
arrays using these 5 basic, simplified operations: precharge
(prepares the arrays and sense amplifiers to read a new row),
row access strobe (reads a specific row using the sense ampli-
fiers into a SRAM row buffer, with 1 buffer for each bank),
column access strobe (bursts data of a specific column of the

119

Bank 7
Bank 6

Bank 5
Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Column-
address
decoder

128
(x64)

Bank 7
Bank 6

Bank 5
Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

row-address
latch and
decoder

I/O gatting
DM mask logic

Bank 7

Sense Amplifiers

Bank 6

Sense Amplifiers

Bank 5

Sense Amplifiers

Bank 4

Sense Amplifiers

Bank 3

Sense Amplifiers

Bank 2

Sense Amplifiers

Bank 1

Sense Amplifiers

Bank 0

16,384 Rows
128 Columns

64b per Column

Sense Amplifiers

8,192

16,384

64 bits
Read FIFO

and data
MUX

8 bits

Row
address

Column
address

Figure 1: DDR 3 x8 functional block diagram of a single
device [17].

row buffer from the DRAM devices to the bus), column write
(receives data from the bus and overwrites the addressed col-
umn of an open row) and refresh (refresh capacitor charges
a row, usually done automatically by each device).

Since processors have been increasing their throughput de-
mand, the DRAM evolved to meet the requirements of mod-
ern processors. DDR memories have emerged as a major
technological breakthrough, providing the ability of trans-
mitting data at both clock edges. Its evolutions as DDR 2,
DDR 3, DDR 4 and so forth generally increased the I/O
frequency by increasing the data burst capability and bus
operating frequency. However, the organization of a DDR
DRAM device in all versions suffered few architectural mod-
ifications. Figure 1 shows a schematic of the basic DDR 3 x8
device. Despite these advancements in memory technology,
the operating frequency of the basic devices to a certain
data width is limited, providing a lower throughput than
what is required by modern processors. Thus, besides the
burst technique, sets of devices are deployed in a module to
increase parallelism and increase data throughput.

A widely used technique for high performance systems is
the integration of multiple channels and multiple memory
controllers. This technique allows memory modules to be
used in parallel, although on a limited bus width per module.
However, even for systems with a high memory bandwidth, if
we consider streaming applications that present a high spa-
tial locality and low temporal locality, the cache hierarchy
will represent a waste of resources in terms of performance
and energy consumption. This happens because the proces-
sor will not use it, as the data will be brought into the cache
and removed as soon as possible to make room for new data.

3.2 Evaluating Memory Constraints
To evaluate the sources of inefficiency in a system, we

present in Figure 2 the number of execution cycles of three
application kernels: vector sum, 5-point stencil computa-
tion and matrix multiplication. These applications repre-
sent three different scenarios with a zero, medium and high
amount of data reuse, respectively. We evaluated the behav-
ior of these three applications with different memory param-
eters and a different number of threads. Each bar shows the
number of execution cycles from 1 to 16 threads/cores using

an Atom-inspired processor as baseline, with 1 channel and
1 memory module attached to it. The first two bars evaluate
the impact of vector instructions set SSE 4.2 and AVX-512.
The third bar shows the impact of larger L2 cache memories,
which are shared between 2 cores. The fourth bar shows how
performance scales given a zero latency for DRAM opera-
tions (representing ideal DRAM devices and module laten-
cies), but keeping the bus width. The last bar shows how
performance scales given a higher bandwidth (representing
close-to-ideal bandwidth), by using 64 full-width parallel
memory channels.

Observing the experimental results, we can see that band-
width is the real constraint to performance. However, scal-
ing the number of channels (in order to increase the band-
width) demands resources and increases power consumption.
Therefore it is not a scalable solution nor a valid alternative
for embedded systems. The intuitive solution for this is
to place the processing logic closer to data, alleviating or
even avoiding the costs related to data movement, as it has
been reasoned that there are varied advantages that can be
achieved [6, 27, 28]. There are two logical approaches: put
more memory closer to the processors through usage of em-
bedded DRAM [1, 16], or enable processing in the DRAM
modules [27].

In the detail of Figure 1 it is possible to observe that a
large data width is always available when a row is read inside
the DRAM devices, although at a low operating frequency.
These rows of data are the focus of this work. Even if the
transfer rate is reduced due to the low operating frequency
of the DRAM devices (that is, 200 MHz for device and
1600 MHz for I/O), if we were to compute inside the DRAM
devices using row buffers (that is, operation in 1 KB width
data vectors), we could theoretically achieve a throughput
of up to 204.8 GB/s, considering the parallelism between
8 banks. This means that accessing all DRAM devices in
this way, assuming 8 devices at 200 MHz, it is possible per-
form at rates of 1.23TB/s calculation throughput (consider-
ing the sum of all 1 KB row buffers from 8 devices). This
peak throughput is obtained considering that only the Row
Precharge (RP) and Row Address Strobe (RAS) signals are
required to obtain a full row buffer, as no Row Cycle (RC)
and Column Address Strobe (CAS) delays are necessary.

In this paper, we propose to insert Single Instruction Mul-
tiple Data (SIMD) units inside the DDR memory devices.
The core idea is to perform vector instructions using en-
tire open row buffers using vector functional units. In this
way, we eliminate the bandwidth constraint and enable par-
allelism between vector operations in the DRAM and the
processing cores, while we require to embed a logic into the
DDR devices that is much smaller than a processor. Con-
sidering that a common DDR 3 device provides between 1
and 2 KB row buffer sizes, and in most of the cases memory
modules have between 8 and 4 devices, this mean that our
mechanism can operate over registers holding up to 8 KB.

4. THE MVX MECHANISM
The main focus of this work is to reduce the data move-

ment between processor and main memory for embedded
systems, exploring the current implementation of modern
DRAM devices. In this section, we introduce our mecha-
nism, the Memory Vector Extensions (MVX), detailing the
required processor and memory system modifications as well
as the operations of the mechanism.

120

0
25
50
75

100
125
150
175
200
225
250

1 2 4 8 16

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Number of Threads

SSE L2­1MB AVX L2­1MB AVX L2­4MB
AVX NoLat AVX 64 Ch.

(a) Vector sum.

0

25

50

75

100

125

150

1 2 4 8 16

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Number of Threads

SSE L2­1MB AVX L2­1MB AVX L2­4MB

AVX NoLat AVX 64 Ch.

(b) Stencil.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8 16

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Number of Threads

SSE L2­1MB AVX L2­1MB AVX L2­4MB
AVX NoLat AVX 64 Ch.

(c) Matrix multiplication.

Figure 2: Number of execution cycles for multiple threads performing a vector sum, stencil computation and matrix multipli-
cation.

As explained in Section 3, MVX makes use of the fact
that during normal DDRx operation, while the memory con-
troller opens a new row and requests a column of data, a
wider range of addresses is available inside the row buffers.
Our approach is based on direct access to data available in
the sense amplifiers of the open rows. To take full advan-
tage of the data available inside the memory devices, we
implement vector functional units along an additional regis-
ter bank inside the DRAM. These new functional units will
answer to specific processor instructions which we introduce.

The main objective of MVX is to perform large-scale com-
putation inside the memory, avoiding expensive data trans-
fers between the memory and processor. Our mechanism
behaves similarly to vector instructions that are available
in current processors, such as Neon, MMX, SSE and AVX.
However, with our mechanism, the processor uses special
MVX instructions that are sent to be operated inside the
DRAM. The next sections will detail the architectural mod-
ifications required by our mechanism, discuss implementa-
tion possibilities and evaluate the integration overhead.

4.1 DRAM Modifications
To perform vector instructions inside the DRAM, we re-

quire two main logic additions to the DDR device, a register
bank and the vector functional units. Figure 3 illustrates
the MVX inside a DRAM device. This figure presents a
DDR 3 x8 device, even though our mechanism can be eas-
ily adapted for different DDRx device layouts (for example,
different row bank size, data bursts, etc.). The additional
register bank available inside the DRAM device, this com-

Bank 0

Sense amp.

8,192

Bank 1

Sense amp.

8,192

Bank 7

Sense amp.

8,192

I/O gating
DM mask logic

Register bank
8x 8,192

MVX

MVX
Functional units

...

Control
signals...

8,192

Figure 3: Single DDR 3 x8 device with the modifications
required by our mechanism.

ponent is decoupled from the row buffers in such way that it
can be used to store full row buffers from any bank inside the
device. Each register is capable of handling an entire row
buffer. Thus, open row signals can be issued to different
banks to achieve higher performance. Such a register bank
could also be used to accelerate non-MVX code by caching
row buffers [26], however, this is not evaluated in this pa-
per. In order to support instructions that need to transfer
data between memory devices (such as shift or shuffle in-
structions), a possible implementation would require a bus
interconnecting the MVX register banks from different de-
vices. We use this basic implementation in our evaluation.

Although the MVX operates in a sequential way, the func-
tional units act as a restricted data-flow processor. A given
operation may start as soon as the registers are available.
To support that data-flow, we must have a flag associated
with each register that indicates if the operand is ready.
Each MVX instruction must erase this flag for its destina-
tion register, and re-enable it whenever the instruction be-
comes ready. This system enables the DRAM to open rows
from different banks in parallel, and also ensures that once
a MVX instruction requires operands that are not ready,
execution will stall.

Upon registers being ready, the functional units operate
in several steps to process the entire row buffer. The num-
ber of steps depends on the number of available functional
units. We further explore the trade-offs of the number of
functional units in Section 5. All functional units operate at
the DRAM device frequency. After completion, every MVX
instruction sends an acknowledgment signal to the proces-
sor, such that our instructions behave similar to a normal
memory request. These acknowledgment signals provide im-
portant information for the processor regarding the status of
each operation, such as overflow, division-by-zero and other
exceptions. For the Intel AVX instructions, a set of 17 bits is
enough to provide the information regarding the operation
status [12]. During our mechanism evaluation, we considered
an acknowledgment of 64 bits in order to correctly simulate
the impact of this transmission in the final performance.

4.2 Memory Controller Modifications
In our mechanism, the memory controller is responsible

for handling the MVX instructions on its internal buffers
and sending the instruction to the DRAM in-order. This
reduces the amount of logic required inside the DRAM. Al-
though MVX instructions must be treated in-order, the nor-

121

mal read and write operations can still be scheduled using
the standard memory controller policy.

When the memory controller receives the MVX lock oper-
ation, the memory controller must manage to lock the MVX
mechanism inside the DRAM to operate only to that par-
ticular thread that requested the lock. This is important
to guarantee the consistency of the registers when two or
more threads are performing MVX operations. In case the
memory is already locked, the MVX instructions from the
requester waits until the DRAM gets unlocked. After a lock
is granted, the MVX instructions are able to perform their
operations, avoiding that one thread modifies the content of
registers that are being used by a different thread. Consid-
ering that such a lock mechanism is only necessary to main-
tain the MVX registers consistent, other non-MVX read and
write operations can still be issued and serviced normally
even when the MVX is locked. A simple mechanism could
make use of this locking system to power gate all MVX re-
sources after a certain threshold period of time, reducing
any energy overhead during idle periods.

4.3 Processor Modifications
Few modifications inside the processor are required for

our mechanism. We require an ISA extension to create our
MVX instructions. We design our instructions such that
their execution is similar to a subset of AVX instructions.
These MVX instructions have to be written in the applica-
tion’s source code, just like normal vector instructions, with
the difference that these operations will be applied over a
wider data register inside the memory devices.

The MVX instructions use a new register bank inside the
DRAM to perform operations. To avoid resource conflicts,
a MVX code snippet needs to be wrapped by MVX’s lock
and unlock instructions. These instructions will perform a
lock in the MVX structures for a specific thread, unlocking
it whenever an unlock is executed. The application’s code
with the MVX instructions will pass through the pipeline
just as a memory load operation would. MVX instructions
that do not require memory addresses, such as MVX lock
and unlock, will bypass the address generation unit and wait
to be transmitted inside the Memory Order Buffer (MOB).

All the MVX instructions are sent to the MOB to be de-
livered to the memory subsystem. These instructions wait
inside the MOB for an answer from the memory system,
which acknowledges the operation as successful or raises ex-
ceptions. The processor uses these instructions’ acknowl-
edgments to control execution flags such as overflow, not-
a-number, among others. The MVX instructions that per-
form load or store work with virtual addresses and must be
translated by the Translation Look-aside Buffer (TLB) and
checked for correct permissions to access the given address
range. After passing through the TLB, the requests follow
the cache memory hierarchy, bypassing the memory caches.
The directory must be changed, as once a request arrives
into the directory, we ensure that the directory performs a
write-back and invalidates all the data in the range at which
the specific MVX instruction will operate.

4.4 Logic Overhead
MVX can be implemented with different widths of vector

FUs, creating a trade-off between performance and area. Ta-
ble 3 presents the estimated number of transistors required
for each different implementation of MVX and compares it

Table 3: Estimated logic overhead per DRAM device.

Component
of transistors for each config.

256 FUs 128 FUs 64 FUs 32 FUs

#FUs × 32 bit - Int. ALUs 0.5 M 0.3 M 0.1 M 0.1 M
#FUs × 32 bit - Int. Shift. 2.6 M 1.3 M 0.6 M 0.3 M
#FUs × 32 bit - Int. Mul. 5.4 M 2.7 M 1.3 M 0.7 M
#FUs × 32 bit - Int. Div. 4.9 M 2.4 M 1.2 M 0.6 M
#FUs × 32 bit - FP Units 32.7 M 16.3 M 8.2 M 4.1 M

8× 8192 bit - Registers 800 K 800 K 800 K 800 K
8 Banks - Muxers 230 K 230 K 230 K 230 K

Total of transistors 47.2 M 24.1 M 12.6 M 6.5 M
% of a 512 MB device 1.1% 0.59% 0.31% 0.16%

to total size of each DRAM device. For our baseline con-
figuration with 256 FUs, MVX requires about 47 million
transistors, which represents less than 1.5% of the DRAM
size. Since the number of transistors required for the regis-
ters and muxers is low compared to the number of transis-
tors used by the FUs, the total number of transistors scales
almost linearly with the number of FUs. Although we do
not use floating-point instructions in our evaluation, we in-
clude the FP FUs in our calculation to consider a general
version of MVX. The NDCores mechanism [20] discussed in
Section 2 has an estimated area overhead of 26 million tran-
sistors, based on an ARM Cortex-A5 architecture [4], which
is slightly higher than our configuration with 128 FUs per
device. In our experimental evaluation, we will compare
NDCores to our MVX proposal.

4.5 Technological Integration Alternatives
Previous near-data computing proposals integrate their

mechanisms through three main approaches: DRAM inte-
gration inside the memory device, separate logic inside the
memory module and 3D stacked integration. For our evalu-
ation, we considered the DRAM integration inside the mem-
ory device alternative. However, other integration possibili-
ties could be adopted, each with different trade-offs.

Integrating the mechanism inside the DRAM memory de-
vice is a limiting factor for the insertion of large amounts
of logic inside the memory, primarily because the technol-
ogy used in DRAMs limits the speed that can be achieved
for logic circuits while requires larger area than other inte-
gration cells [14]. MVX does not aggressively modify the
current DRAM architecture, placing the control logic inside
the memory controller. We consider that MVX functional
units and register bank could be integrated directly next to
I/O gating logic, where a designer might even be able to
take advantage of shared resources.

Techniques such as 3D stacking using TSV [18] emerged
as solutions for integration of different technologies directly
in DRAM devices. This solution allows the usage of more ef-
ficient integration technology to implement the MVX logic,
enabling a significant reduction of energy and power con-
sumption. However, this approach could reduce the amount
of data that MVX can access in parallel if using an inter-
connection narrower than the row buffer.

Another approach would be to implement MVX logic out-
side the devices, inside the memory modules. This im-
plementation would also reduce data transfers outside the
DRAM module while allowing different operating frequen-
cies. However, the high cost to extract a large bandwidth
from the devices must be considered.

122

1 void vecsum(int a[], int b[], int c[], int N){
2 for(int n=0; n<N; n++)
3 c[n] = a[n] + b[n];
4 }

(a) C code.

1 vecsum_MVX_unrolled:
2 add $0x1,%rbp
3 MVXlock
4 ; ld a[n], a[n+1], a[n+2], a[n+3]
5 MVXmovdqu $0x0000(%r11,%r9,1),%mvx0
6 MVXmovdqu $0x2000(%r11,%r9,1),%mvx1
7 MVXmovdqu $0x4000(%r11,%r9,1),%mvx2
8 MVXmovdqu $0x6000(%r11,%r9,1),%mvx3
9 ; ld b[n], b[n+1], b[n+2], b[n+3]
10 MVXmovdqu $0x0000(%rbx,%r9,1),%mvx4
11 MVXmovdqu $0x2000(%rbx,%r9,1),%mvx5
12 MVXmovdqu $0x4000(%rbx,%r9,1),%mvx6
13 MVXmovdqu $0x6000(%rbx,%r9,1),%mvx7
14 ; add a[n],b[n]; a[n+1],b[n+1]; ...
15 MVXpaddd %mvx4,%mvx0
16 MVXpaddd %mvx5,%mvx1
17 MVXpaddd %mvx6,%mvx2
18 MVXpaddd %mvx7,%mvx3
19 ; st c[n], c[n+1], c[n+2], c[n+3]
20 MVXmovdqu %mvx0,$0x0000(%r10,%r9,1)
21 MVXmovdqu %mvx1,$0x2000(%r10,%r9,1)
22 MVXmovdqu %mvx2,$0x4000(%r10,%r9,1)
23 MVXmovdqu %mvx3,$0x6000(%r10,%r9,1)
24 MVXunlock
25 add $0x8000,%r9
26 cmp %rbp,%r13
27 ja <vecsum_MVX_unrolled>

(d) MVX assembly code with the main loop unrolled 4 times.

1 vecsum:
2 add $0x1,%rbp
3 movdqu (%r11,%r9,1),%xmm0 ; ld a[n]
4 movdqu (%rbx,%r9,1),%xmm1 ; ld b[n]
5 paddd %xmm1,%xmm0 ; add a[n], b[n]
6 movdqu %xmm0,(%r10,%r9,1) ; st c[n]
7 add $0x10,%r9
8 cmp %rbp,%r13
9 ja <vecsum>

(b) SSE assembly code.

1 vecsum_MVX:
2 add $0x1,%rbp
3 MVXlock ; lock MVX
4 MVXmovdqu (%r11,%r9,1),%mvx0 ; ld a[n]
5 MVXmovdqu (%rbx,%r9,1),%mvx1 ; ld b[n]
6 MVXpaddd %mvx1,%mvx0 ; add a[n], b[n]
7 MVXmovdqu %mvx0,(%r10,%r9,1) ; st c[n]
8 MVXunlock ; unlock MVX
9 add $0x2000,%r9

10 cmp %rbp,%r13
11 ja <vecsum_MVX>

(c) MVX assembly code.

Figure 4: Four code versions of the vector sum benchmark. The C code shown in Figure (a) generates the other 3 versions.

4.6 Binary Generation and Optimizations
In order to use MVX instructions, we require no changes

to source codes. However, the code needs to be recompiled in
order to make use of the MVX instructions. In our proposal
in this paper, we consider that the compiler aligns the data
for MVX at the row buffer size (8 KB in our evaluation).
Inside the DRAM, MVX performs operations sequentially.
However, we adopted a loop unrolling technique in order to
better organize the loads and operations in such a way that
using the register bank to store the data, the memory con-
troller can issue the row access signals as early as possible,
exposing better the bank parallelism inside the DRAM.

To perform a loop unrolling, we set the compiler objec-
tive of the target code to perform memory loads as early as
possible, which is a technique that is already commonly per-
formed by compilers [11]. Figure 4 presents three different
assembly codes for the vector sum kernel, the x86 version us-
ing SSE instructions with XMM registers and two versions
using the MVX ISA. For the MVX version, we present the
kernel with the normal loop and the unrolled loop. Prelim-
inary results have shown an average of 68% improvements
when unrolling loops. We use the loop unrolling technique
for all the results of our experiments.

5. EXPERIMENTAL EVALUATION
This section presents the simulation details, the applica-

tion kernels and the evaluation results comparing our mech-
anism to the baseline embedded system and previous work.

5.1 Configuration Parameters and Baseline
To evaluate our MVX mechanism, we used an in-house

cycle-accurate simulator [2, 3]. The simulation parameters
are inspired by Intel’s Atom processor with the Silvermont
Out-of-Order (OoO) micro-architecture [13]. Table 4 shows
the simulation parameters used for our tests. The SSE base-
line system supports the SSE 4.2 vector instructions using
128 bits registers.

The Silvermont micro-architecture only supports SSE in-

structions on up to 8 cores and 2 memory channels. In
order to build a possible future scenario for comparison, we
also extrapolate the baseline configuration and build a sec-
ond system named AVX. This second system supports the
AVX vector instructions using 512 bits registers (the same
used on Xeon-Phi processors). We then evaluate our pro-
posal against configurations with up to 16 cores, and up to
64 memory channels.

As the MVX hardware is a set of vectorial functional units
and a register bank, we performed the experiments with the

Table 4: Baseline and MVX system configuration.

OoO Execution Cores - 2 GHz; 16 cores; Front-end 2-wide;
1 branch per fetch, 8 parallel in-flight branches;
14 stages (3-fetch, 3-decode, 3-rename, 2-dispatch, 3-commit);
24-entry fetch buffer, 32-entry decode buffer, 32-entry ROB;
2-alu, 1-mul. and 1-div. INT units (1-3-20 cycle);
1-alu, 1-mul. and 1-div. FP units (5-5-20 cycle);
1-load and 1-store functional units (1-1 cycle);
MOB entries: 10-read and 10-write;

Branch Predictor - 4 K-entry 4-way set-associative BTB;
Two-Level PAs predictor; 16 K-entry BHT, 2-bits prediction;

L1 Data + Inst. Cache - 32 KB, 8-way, 2-cycle; 64 bytes line;
LRU policy; MSHR entries: 8-request, 8-write-back, 1-prefetch;
Stride Prefetcher: 1-degree, 16-strides table;

L2 Cache - 1 MB shared for every 2 cores;
16-way, 4-cycle; 64 bytes line; LRU policy;
MSHR entries: 16-request, 8-write-back, 2-prefetch;
Inclusive LLC; MOESI coherence protocol;
Stream Prefetcher: 2-degree, 16 prefetch distance, 32-streams;

DRAM Controller and Interconnection - Bi-directional ring;
On-chip DRAM controller, Open-row first policy, 1-channel;
DDR3-1333, 8 burst length at 3:1 frequency ratio;
8 DRAM banks, 8 KB row buffer per bank (1 KB per device);
CAS, RP, RCD, RAS and CWD latency (9-9-9-24-7 cycles);

MVX Processing Logics - Operation frequency: 166 MHz;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units;
Up to 256 sets of functional units (INT + FP) per device;
1 register bank per device, with 8 registers of 8,192 bits each;
Interconnection between registers: 3 cycles latency;

123

MVX working at DRAM device operating frequency, where
all the vectorial operations could be performed in parallel.
However, experiments with a reduced number of functional
units are also presented.

5.2 Application Kernels
For our evaluations we used three different applications

kernels: the vector sum, the 5-points stencil and the 2-
dimensional matrix multiplication. The vector sum appli-
cation calculates a sum of two vectors of integers, storing
the result in a third vector. During normal execution, the
processor performs sums with vector instructions over an ar-
ray of contiguous elements. The vector sizes evaluated were
1, 2, 4, 8, 16, 32 and 64 MB.

The stencil application performs a single step application
of a 5-point stencil over a matrix of integer elements, adding
up the 5 neighbors elements, multiplying the result by two
and then storing every result in an output matrix. During
the computation, the algorithm uses two aligned loops, us-
ing vector instructions over multiple contiguous elements, in
such a way that after each inner loop iteration, the calcula-
tion over multiple points are ready. The matrices are square
and the sizes evaluated were 1, 2, 4, 9, 16, 36 and 64 MB.

The matrix multiplication application uses three integer
square matrices, C = A × B. The algorithm multiplies a
single element from matrix A with multiple contiguous ele-
ments from matrix B, accumulating the results into multiple
contiguous elements of the matrix C. The matrices evaluated
have sizes of 1, 2, 4, 9 MB.

The vector sum application represents the most favorable
case for our mechanism since it does not reuse data and only
performs a stream over contiguous elements. The stencil
presents some data reuse, making use of the cache memory.
The matrix multiplication application has a high amount of
data reuse, thus benefiting greatly from the cache memories.
The assembly code of the kernel of these three applications
was obtained from the gcc compiler, and it is similar to the
code generated by Intel compiler, using the SIMD extensions
present in the simulated processors.

5.3 Results Varying the Input Size
Figure 5 presents the number of execution cycles for the

three evaluated application kernels using only one thread
and varying the input size of each application. We can then
observe how each system scales when the data size increases.

Comparing our mechanism to the baseline system that
supports SSE, we can observe that our mechanism performed
on average 204×, 18× and 10× faster for the vector sum,
stencil and matrix multiplication applications, respectively.
When compared to the AVX, the MVX performed 147×,
14× and 6× faster than the baseline for the same applica-
tions.

This first experiment also shows the benefits of the wider
vector units inside the processor, where the AVX performed
on average 1.41× faster than the SSE. Thus, for the next
results we keep only the AVX model for the rest of the com-
parisons.

3
.4
6

7
.3
1

1
5
.0
0

3
0
.3
9

3
0
.3
9

1
2
2
.6
2

2
4
5
.5
4

2
.3
4

5
.1
9

1
0
.8
7

2
2
.2
4

2
2
.2
4

9
0
.4
6

1
8
1
.3
9

0
.0
2

0
.0
4

0
.0
7

0
.1
5

0
.1
5

0
.5
8

1
.1
6

0

50

100

150

200

250

300

1 2 4 8 16 32 64

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Array Size (MB)

SSE AVX MVX

(a) Vector sum.

1
.9
0

4
.6
5

8
.2
3 1
7
.3
6

1
7
.3
6

8
1
.2
9

1
4
2
.7
0

1
.5
5

3
.8
0

6
.7
2

1
3
.8
3

1
3
.8
3

6
8
.3
5

1
2
1
.5
2

0
.2
8

0
.4
0

0
.5
5

0
.7
8

0
.7
8

2
.8
8

3
.7
7

0

20

40

60

80

100

120

140

160

180

1 2 4 9 16 36 64

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Matrix Size (MB)

SSE AVX MVX

(b) Stencil.

1
9
8
.7
2

1
,0
2
9
.5
4

2
,4
5
6
.5
3

8
,3
4
8
.5
3

7
3
.5
3

7
4
0
.2
5

1
,7
5
9
.7
6

5
,9
8
5
.1
0

4
4
.8
1

1
0
0
.7
3

1
7
9
.3
8

4
0
2
.6
0

0

2000

4000

6000

8000

10000

12000

1 2 4 9

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

Matrix Size (MB)

SSE AVX MVX

(c) Matrix multiplication.

Figure 5: Applications’ number of execution cycles varying the input size.

1
8
1
.3
9

1
1
4
.5
2

7
4
.1
5

5
4
.0
8

4
9
.6
3

4
7
.3
6

4
8
.1
8

1
.1
6

1
3
6
.4
1

6
0
.6
0

3
1
.4
1

1
8
.0
7

1
1
.8
1

9
.4
9

7
.7
9

0

50

100

150

200

250

1
Ch.

2
Ch.

4
Ch.

8
Ch.

16
Ch.

32
Ch.

64
Ch.

1
Ch.

AVX MVX

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

1 Thread 2 Threads 4 Threads

8 Threads 16 Threads

(a) Vector sum.

1
2
1
.5
2

8
1
.5
9

7
4
.0
1

5
1
.3
5

4
9
.0
7

4
9
.5
2

4
9
.9
2

3
.7
7

8
4
.6
9

4
1
.8
1

2
2
.9
8

1
2
.9
9

8
.6
2

6
.4
7

5
.7
0

0

20

40

60

80

100

120

140

160

1
Ch.

2
Ch.

4
Ch.

8
Ch.

16
Ch.

32
Ch.

64
Ch.

1
Ch.

AVX MVX

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

1 Thread 2 Threads 4 Threads

8 Threads 16 Threads

(b) Stencil.

5
,9
8
5
.1
0

5
,1
3
7
.3
6

4
,8
1
1
.5
8

4
,6
0
9
.8
5

4
,6
0
6
.6
3

4
,5
6
6
.0
4

4
,5
6
3
.1
7

4
0
2
.6
0

1
1
5
6
.0
3

6
9
0
.4
8

3
5
3
.5
6

2
3
9
.1
2

2
1
4
.4
4

2
0
7
.3
2

2
0
6
.0
5

0

1000

2000

3000

4000

5000

6000

7000

8000

1
Ch.

2
Ch.

4
Ch.

8
Ch.

16
Ch.

32
Ch.

64
Ch.

1
Ch.

AVX MVX

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

1 Thread 2 Threads 4 Threads

8 Threads 16 Threads

(c) Matrix multiplication.

Figure 6: Applications’ number of execution cycles varying the number of channels.

124

5.4 Results Varying the Number of Threads
and Memory Channels

Figure 6 evaluates the baseline performance scalability
when the number of threads and memory channels increases,
for the three applications kernels. This experiment enables a
comparison between our mechanism to a baseline exploring
the parallelism of multiple cores while we also extrapolate
the number of memory channels on the system that supports
AVX. With this experiment we intend to show the break-
even point for the implementation of our mechanism when
compared to highly parallel architectures with larger num-
ber of cores and bandwidths for memory access. However,
for the vector sum, we found that our mechanism performs
6× faster than a baseline with 64 channels and 16 cores.

When increasing the amount of data reuse, for the stencil
application, our mechanism still performs 1.5× faster than
the baseline that uses 64 channels and 16 cores. For the ma-
trix multiplication, which has a high amount of data reuse,
the break-even point occurs only with 16 cores and more
than 4 memory channels.

5.5 Results Varying the MVX Latency
Considering that different integration technologies could

lead to different latencies for our mechanism operation, Fig-
ure 7 evaluates MVX with different latencies to perform its
operations on the functional units. This experiment gives us
insight regarding two project decisions: first, our mechanism
could be implemented using fewer functional units, perform-
ing the operations over fewer operands in a multi-cycle way;

second, MVX could be implemented in a lower frequency
than the memory (that is, lower than 166 MHz). In both
cases the latency to perform a single operation would be mul-
tiplied by a factor, depending on the number of functional
units or the operation frequency.

For vector sum and stencil, which present zero or low
amount of data reuse, we can observe that even increasing
the latency by 128×, our mechanism continues to deliver a
higher performance than the baseline system with 8 channels
and 16 cores. Executing the matrix multiplication applica-
tion, our mechanism with an increased latency of 4× is still
better than a system with 1 or 2 channels and 16 cores. We
can see with these results that our mechanism presents a
wide design space with sustained performance gains.

5.6 Comparison to Related Work
We compare our MVX proposal to the NDCores mech-

anism [20] discussed in Section 2. We have implemented
the NDCores with 4 cores per DRAM device, and a total
of 8 devices. We can see that MVX is on average 25×, 4×
and 3× than NDCores for vector sum, stencil and matrix
multiplication kernels. We can observe that for stencil and
matrix multiplication applications, the NDCores makes a
better use of its cache, achieving a better result. However,
for vector sum, the MVX have a good advantage over ND-
Cores. Comparing MVX with smaller logic overhead than
NDCores (that is, MVX with 128 or less FUs), our proposal
achieves substantially better results than the previous work
for all the evaluated application kernels and input sets.

1
3
6
.4
1

6
0
.6
0

3
1
.4
1

1
8
.0
7

1
.1
6

1
.2
5

1
.4
5

1
.7
7

2
.4
0

3
.7
4

6
.3
3

1
1
.6
0

0
20
40
60
80

100
120
140
160
180

1
 C
h
.

2
 C
h
.

4
 C
h
.

8
 C
h
.

1
x
La
t.

2
x
La
t.

4
x
La
t.

8
x
La
t.

1
6x
 L
at
.

3
2x
 L
at
.

6
4x
 L
at
.

1
2
8
x
La
t.

AVX
16 Threads

MVX
1 Thread

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

(a) Vector sum.

8
4
.6
9

4
1
.8
1

2
2
.9
8

1
2
.9
9

0
.2
8

0
.3
0

0
.3
6

0
.4
6

0
.6
6

1
.0
7

1
.8
9

3
.5
3

0
10
20
30
40
50
60
70
80
90
100

1
 C
h
.

2
 C
h
.

4
 C
h
.

8
 C
h
.

1
x
La
t.

2
x
La
t.

4
x
La
t.

8
x
La
t.

1
6x
 L
at
.

3
2x
 L
at
.

6
4x
 L
at
.

1
2
8
x
La
t.

AVX512
16 Threads

MVX
1 Thread

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

(b) Stencil.

1
1
5
6
.0
3

6
9
0
.4
8

3
5
3
.5
6

2
3
9
.1
2

4
0
2
.6
0

4
5
1
.4
0

5
8
7
.9
9

8
2
1
.9
3

1
2
9
5
.5
1

2
2
3
7
.5
1

4
1
2
6
.6
6 7
8
9
9
.8
2

0

2000

4000

6000

8000

10000

12000

14000

1
 C
h
.

2
 C
h
.

4
 C
h
.

8
 C
h
.

1
x
La
t.

2
x
La
t.

4
x
La
t.

8
x
La
t.

1
6
x
La
t.

3
2
x
La
t.

6
4
x
La
t.

1
28
x
La
t.

AVX512
16 Threads

MVX
1 Thread

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

(c) Matrix multiplication.

Figure 7: Applications’ number of execution cycles varying the latency per MVX operation.

0
.5
8 1
.2
0 1
.9
6 3
.5
8 6
.5
3 1
2
.0
2

2
3
.4
6

0
.0
2 0
.0
4 0
.0
7 0
.1
5 0
.2
9 0
.5
8 1
.1
6

0
.0
3 0
.0
6 0
.1
1 0
.2
2 0
.4
4 0
.8
8 1
.7
7

0.01

0.10

1.00

10.00

100.00

1MB 2MB 4MB 8MB 16MB 32MB 64MB

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

NDCores MVX 256FUs MVX 128FUs

MVX 64FUs MVX 32FUs

(a) Vector sum.

0
.3
0 0
.4
4

1
.0
8 2
.2
8 3
.9
1

2
9
.8
7

2
8
.4
3

0
.2
8 0
.4
0

0
.5
5 0
.7
8 1
.0
9

2
.8
8

3
.7
7

0
.4
6 0
.6
7

0
.9
1 1
.3
1

1
.8
1

5
.0
2

6
.6
7

0.10

1.00

10.00

100.00

1MB 2MB 4MB 9MB 16MB 36MB 64MB

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

NDCores MVX 256FUs MVX 128FUs

MVX 64FUs MVX 32FUs

(b) Stencil.

1
00
.2
1 3
4
1
.4
0

7
4
9
.3
0

1
0
3
2
.4
0

4
4
.8
1 1
0
0
.7
3

1
7
9
.3
8

4
0
2
.6
0

9
1
.4
7 2
0
5
.6
5

3
6
6
.0
9

8
2
1
.9
3

1.00

10.00

100.00

1000.00

10000.00

1MB 2MB 4MB 9MB

Ex
ec
u
ti
o
n
 C
yc
le
s
(M

ill
io
n
s)

NDCores MVX 256FUs MVX 128FUs

MVX 64FUs MVX 32FUs

(c) Matrix multiplication.

Figure 8: Applications’ number of execution cycles comparing MVX to the NDCores mechanism [20]. The y-axis in all three
figures is in logarithmic scale.

125

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced Memory Vector Extensions

(MVX), a new approach to perform near-data computing
implemented directly in the DRAM devices. Similar to the
related work in the area, we showed that reducing data
transfer is an efficient approach to increase performance by
performing calculations closer to the main memory, saving
memory movements between memory and cores.

MVX is capable of achieving high performance gains by
executing vector instructions over a large volume of data in-
side DRAM devices. Through our experiments, we proved
that MVX is capable of executing up to 211× faster than a
single-threaded core. Moreover, when we extrapolated the
number of cores and memory channels of the baseline ar-
chitecture, MVX was still a better choice for applications
with zero or low amount of data reuse. Contrary to previ-
ous work, our design can be implemented in a multitude of
ways using a relatively low amount of hardware, as we show
that even a reduced number of functional units can greatly
improve the performance by avoiding data transfer. This is
important, as new technologies, such as TSV or CGRA, have
not met adoption due to several manufacturing constraints.

In the future, we plan to evaluate our mechanism in a
HMC environment, evaluate complex benchmarks that use
floating point instructions, and also evaluate the impact and
implementation of our mechanism in a system with mul-
tiple memory channels and memory controllers. In this
way, we can evaluate how our mechanism behaves for larger,
performance-oriented systems.

7. REFERENCES
[1] J. W. Adkisson, R. Divakaruni, J. P. Gambino, and

J. A. Mandelman. Embedded dram on
silicon-on-insulator substrate, 2002. US Patent
6,350,653.

[2] M. A. Z. Alves. Increasing Energy Efficiency of
Processor Caches via Line Usage Predictors. PhD
thesis, Universidade Federal do Rio Grande do Sul,
2014.

[3] M. A. Z. Alves, M. Diener, F. B. Moreira,
C. Villavieja, and P. O. A. Navaux. Sinuca: A
validated micro-architecture simulator. In High
Performance Computation Conf, 2015.

[4] ARM. Cortex-A5 Technical Reference Manual. 2010.

[5] E. Azarkhish, D. Ross, I. Loi, and L. Benini. High
performance axi-4.0 based interconnect for extensible
smart memory cubes. In Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2015.

[6] N. Bowman, N. Cardwell, C. Kozyrakis, C. Romer,
and H. Wang. Evaluation of existing architectures in
iram systems. In Workshop on Mixing Logic and
DRAM, 1997.

[7] B. T. Davis. Modern dram architectures. PhD thesis,
University of Michigan, 2001.

[8] J. Draper, J. Chame, M. Hall, et al. The architecture
of the diva processing-in-memory chip. In Int. Conf.
on Supercomputing (ICS), 2002.

[9] D. Elliott, M. Stumm, W. Snelgrove, C. Cojocaru, and
R. McKenzie. Computational ram: Implementing
processors in memory. Design and Test of Computers,
IEEE, 1999.

[10] A. Farmahini-Farahani, J. Ahn, K. Compton, and
N. Kim. Drama: An architecture for accelerated

processing near memory. Computer Architecture
Letters, 2014.

[11] P. B. Gibbons and S. S. Muchnick. Efficient
instruction scheduling for a pipelined architecture. In
ACM SIGPLAN Notices, 1986.

[12] Intel. Intel R� Xeon Phi TM Coprocessor Instruction
Set Architecture Reference Manual. 2012.

[13] Intel. Intel Atom Processor E3800 Product Family.
Technical report, 2015.

[14] B. Jacob, S. Ng, and D. Wang. Memory systems:
cache, DRAM, disk. Morgan Kaufmann, 2008.

[15] D. Lee, Y. Kim, V. Seshadri, et al. Tiered-latency
dram: A low latency and low cost dram architecture.
In Int. Symp. on High Performance Computer
Architecture (HPCA), 2013.

[16] G. H. Loh and M. D. Hill. Efficiently enabling
conventional block sizes for very large die-stacked
dram caches. In Int. Symp. on Microarchitecture, 2011.

[17] Micron. 1gb: x4, x8, x16 ddr3 sdram features, 2006.
1Gb DDR3 SDRAM.pdf - Rev. N 11/14 EN.

[18] J. V. Olmen, A. Mercha, G. Katti, et al. 3d stacked ic
demonstration using a through silicon via first
approach. In Int. Electronic Devices Meeting (IEDM),
2008.

[19] D. Patterson, T. Anderson, N. Cardwell, et al. A case
for intelligent ram. Micro, IEEE, 1997.

[20] S. Pugsley, J. Jestes, R. Balasubramonian, et al.
Comparing implementations of near-data computing
with in-memory mapreduce workloads. Micro, IEEE,
2014.

[21] S. Pugsley, J. Jestes, H. Zhang, et al. Ndc: Analyzing
the impact of 3d-stacked memory+logic devices on
mapreduce workloads. In Int. Symp. on Performance
Analysis of Systems and Software (ISPASS), 2014.

[22] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the
memory wall: The case for processor/memory
integration. In Int. Symp. on Computer Architecture
(ISCA), 1996.

[23] M. Wei, M. Snir, J. Torrellas, and R. B. Tremaine. A
near-memory processor for vector, streaming and bit
manipulation workloads. Technical Report UIUC
DCS-R-2005-2557, University of Illinois at
Urbana-Champaign, Dept. of Computer Science, 2005.

[24] W. A. Wulf and S. A. McKee. Hitting the memory
wall: Implications of the obvious. SIGARCH Comput.
Archit. News, 1995.

[25] D. P. Zhang, N. Jayasena, A. Lyashevsky, et al. A new
perspective on processing-in-memory architecture
design. In Workshop on Memory Systems Performance
and Correctness (MSPC), 2013.

[26] Z. Zhang, Z. Zhu, and X. Zhang. Cached dram for ilp
processor memory access latency reduction. IEEE
Micro, 2001.

[27] Q. Zhu, B. Akin, H. E. Sumbul, et al. A 3d-stacked
logic-in-memory accelerator for application-specific
data intensive computing. In Int. 3D Systems
Integration Conf. (3DIC), 2013.

[28] Q. Zhu, T. Graf, H. E. Sumbul, et al. Accelerating
sparse matrix-matrix multiplication with 3d-stacked
logic-in-memory hardware. In High Performance
Extreme Computing Conf. (HPEC), 2013.

126

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150805080400
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 7.2000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 23.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 23.4000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 9
 10

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 10
 0
 1

 1

 HistoryList_V1
 qi2base

