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Abstract. Although Processing-in-Memory (PIM) architectures have
helped to reduce the effect of the memory wall, the logic placed inside
3D-memories still faces the large disparity between DRAM and CMOS
logic operations. Thereby, for a broad range of emerging data-intensive
applications, the Functional Units (FUs) are usually underutilized, espe-
cially when the application presents poor temporal-locality. As applica-
tions demand irregular processing requirements on the different parts of
their execution, this behavior can be used to reconfigure energy-reduction
techniques, either by scaling frequency or by power-gating functional
units. In this paper, we present the application-dependable characteris-
tics that enable dynamic usage of energy-reduction techniques without
performance degradation for highly constrained PIM designs. The exper-
imental results show that the exploration of a reconfiguration mechanism
can improve PIM system energy efficiency by 5× and also can effectively
benefit both memory-intensive and compute-intensive applications.

Keywords: Processing in Memory ·
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1 Introduction

The 3D-stacking process has emerged as a solution for mitigating the memory-
wall problem. In recent years, the emergence and feasibility of 3D-stacking tech-
nology have opened up opportunities in both architectural and chip design
fields. Supported by these new trends, Processing-in-Memory (PIM) concept
has emerged as a prominent approach to improve performance and reduce the
energy of modern systems. This approach keeps closer processing and data by
taking advantage of logic layer available on 3D-stacked memories to compute
data directly in the memory device. Nevertheless, the design of 3D-stacked PIM
devices still faces challenges related to costs, retention characteristics, and busi-
ness decisions. The main issue resides on the thermal dissipation challenges that
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happen when stacking Dynamic Random Access Memory (DRAM) layers on top
of processor layers. [1]. A second issue involves customizing the DRAM dies for
each processor chip, which introduces design and supply-chain complexity that
would increase the overall manufacturing cost [2].

Although PIM architectures have reduced the effects of the memory wall, the
processing logic placed inside 3D-memories still faces the disparity of latencies
between DRAM and CMOS logic operation. The average latency for DRAM
access is typically tens of times higher than the time of a Functional Unit (FU)
operation under the same constraints, and even worse for the most recent tech-
nology nodes. This fact implies that the processing unit can potentially spend
more time in idle mode and increase power density depending on the arithmetic
intensity. The degree of utilization of FUs relies on data reuse and the compu-
tational intensity inherent from the workload.

Furthermore, the majority of the applications can present a mix of compute-
bound and memory-bound behavior [3]. Thus, the variability of application’s
demand for processing power and the latency disparity between operations on
DRAM and FUs can be used to reduce energy consumption, and also help with
the inherited thermal dissipation problems of the 3D-stacked PIM architectures.
To do so, a special mechanism must detect the fluctuations in the application
needs for FU resources. Further, this mechanism must reconfigure the PIM archi-
tecture to dynamically match the current demand for processing power and keep
the maximum memory bandwidth achievable by each application part based on
some decision heuristic. A reconfiguration process should dynamically adapt the
number of FUs or perform a frequency scaling operation ideally without per-
formance penalties. Adjusting the number of working FUs implies that highly
parallel and bigger operations can be split into smaller and sequential ones.
Thus, both the idle time and the energy consumption of unused FUs could be
minimized.

This paper opens up a discussion on the use of reconfigurability in vectorial
PIM architectures to provide energy-efficiency and overcome technical issues,
rather than limiting the effects of reconfiguration to performance-oriented goals.
The main contributions of this paper are:

1. The use of reconfigurability to minimize thermal power dissipation challenges
in 3D-stacked PIM architectures.

2. The identification of application characteristics to match processing power to
the maximum bandwidth achievable by each application.

3. A reconfigurable mechanism for dynamically reducing the number of active
FUs as the application demands, which varies the processing power of PIM
logic and finds a near-optimal point to the energy consumption.

The rest of this paper is organized as follows: in Sect. 2 a general overview of
3D-stacked PIM is presented, as well as its constraints and feasibility challenges
are discussed. In Sect. 3, hardware and software aspects of reconfiguration on
vector processors are discussed, and some examples are shown to highlight the
benefits of reconfiguration. The experimental setup and methods used to validate
the proposed method are described in Sect. 4 and the results are presented in



264 J. P. C. de Lima et al.

Sect. 4.3. Finally, some related works are listed in Sect. 5 and final considerations
are made in Sect. 6.

2 Background

In this section, a general overview of fundamental concepts related to 3D-stacked
memories and Processing-in-Memory (PIM) architectures are presented. Next,
a brief discussion about 3D-PIM architectures design feasibility and constraints
is promoted to situate the proposed approach realm.

2.1 3D-Stacked Processing-in-Memory

By connecting Dynamic Random Access Memory (DRAM) memory dies stacked
on top of a logic layer using dense Through-Silicon Via (TSV), high-density 3D
memories can provide higher capacity, bandwidth, and lower access latencies
compared to traditional DRAM modules. The most diffused and recent examples
of 3D-memory usage in the industry are the Micron’s Hybrid Memory Cube
(HMC) [4], and AMD/Hynix’s High Bandwidth Memory (HBM) [5]. Figure 1
illustrates the internal organization of a generic 3D-stacked memory. For HMC
and HBM, the 3D memory layout is composed of several DRAM layers, each
one containing multiple banks.

The stacked arrangement of DRAM layers is split vertically into vaults. Each
vault comprises a region of DRAM layers and a logic layer connected by an inde-
pendent group of TSV and controlled by a vault controller. Each vault controller
manages its own DRAM banks independently. Thus, it is possible to operate on
a 3D-memory with both vault-level and bank-level parallelism. Following the
last HMC specification [4], it can be seen that the memory module can have
either four or eight DRAM dies and one logic layer all stacked within a memory
cube. The cube has 32 vaults with their respective vault controllers. Each vault
controller can manage independently 16 memory banks. The HMC can achieve
up to 320 GB/s of bandwidth distributed along four serial link interfaces.

In addition to the emerging of 3D-stacked memories, the increasing demand
for computational resources by data-intensive applications leveraged and reintro-
duced the PIM research field. As the usage of PIM devices alleviates the memory
bottleneck, the natural application domain covers current big-data processing.
Also, PIM reduces energy consumption and accelerates applications execution
time avoiding the data movements back and forth along the memory hierarchy.
Moreover, PIM can exploit both the high memory bandwidth, more massive
Data Level Parallelism (DLP) and vault-level parallelism when coupled with
3D-stacked memories.

There are several architectural PIM design approaches in the literature. For
commodity, and according to [1], they can be classified into two main categories
based on the central processing element type present in the logic layer: General
Purpose Processor (GPP)-like cores and dedicated logic circuits. The former
group adopts the replication of conventional GPPs into the logic layer. This PIM
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Fig. 1. 3D-stacked memory layout comprising of eight DRAM layers and a base logic
layer connected by TSVs and vertically organized in vaults.

processing element type takes advantage in programmability since it inherits
the commodity software development tools such as MPI and CUDA. On the
other hand, processing elements built based on dedicated circuitry often rely on
replication of Functional Unit (FU) elements, which, in turn, achieves high DLP,
memory bandwidth, and computational power [6].

2.2 Constraints and Feasibility of 3D-Stacked PIM

Although 3D-stacked PIM is feasible for a broad range of application domains,
some design challenges must be faced when considering a 3D memory PIM
project. The designers have to deal with power, area and energy constraints
for the logic layer to effectively implement the PIM architecture.

According to [1], the power budget related to the logical layer available in
the last generation of HMC comprises 11W. However, this constraint can be
even smaller if thermal aspects are taken into consideration, reducing it to mere
8.5 W. Regarding area, for an HMC design with a capacity of 8 GB distributed
along eight DRAM layers, 16 memory banks and 32 vaults, the area available
in the logic layer corresponds to 144mm2. Thus, taking into consideration all
the physical and technological aspects involved in the logic layer project design,
the most suitable PIM processing element type for 3D-stacked memories is that
one based on FUs replication [1]. Moreover, FU-centered PIM design with vec-
tor operations capabilities can exploit both the entire bandwidth available and
provide high DLP, while fitting in the logic layer constraints.

3 Reconfigurable Execution

There are several possibilities to be explored in a PIM architecture design when
concerning about energy consumption. Even following the power and area con-
straints related to 3D logic layer, some aspects intrinsic from DRAM technology
cannot be changed. Although PIM reduced the memory walls, the time spent to
perform a memory access to a DRAM is still tens of times higher than the time
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required to process the data in the FUs. So, exploring such inherent character-
istics in PIM designs can lead to an energy consumption reduction.

Recent proposals of PIM architectures rely on multiple homogeneous pro-
cessing units, and most of them have in common a high number of FUs. For
example, we will examine groups of Single Instruction Multiple Data (SIMD)
units organized into several Vector Processing Units (VPUs). Thus, sizing the
number of FUs to exploit the high internal bandwidth requires an analysis of the
area and power costs. Floating point units, for instance, are generally required
in basic applications and have a high cost regarding area and power [7]. Energy
savings can be achieved by (a) selecting how many units will execute a code por-
tion on compile time (b) dynamically scaling frequency or by (c) reconfiguring
the data path to turn on/off FUs when they are not used for a long time.

3.1 Application Classification

The SIMD units with fixed width and frequency cannot satisfy different process-
ing utilization requirements of various applications. Even a single application can
have a variable processing power pattern during execution time [8]. PIM based
on SIMD units are a natural choice for many data-intensive workloads [9–11],
as this combination can benefit both memory-intensive and compute-intensive
applications. Some known metrics can identify the compute intensity and cost
of memory access, such as:

1. Memory access distance: indicates a fraction of cycles where pipeline could
be stalled due to demand for load or store instructions. As kernel code por-
tions with poor-temporal locality may cause a miss throughout the cache
hierarchies, the major part of such cycles may be spent due to DRAM latency
accesses [12].

2. Arithmetic intensity and cost of instruction: indicates how many SIMD
operations are made in sequence, and the cost in cycles of each instruction.
For instance, floating point division takes 20 cycles, while typical bit-wise
operations are made in 1 cycle.

3. Memory parallelism: the predominance of regular memory access patterns,
either by vault-level and bank-level parallelism, reduces the average memory
access latency. Thus, the reduced and stable latency can be used to create a
pipeline for data stream workloads [13,14].

Either a compiler or a HW mechanism can identify such metrics. As past
studies already extracted these characteristics on compile time, a compiler-based
tool with hardware information should be suitable for that task. This compiler
tool can analyze basic blocks based on the costs of instructions and memory
accesses to foresee the arithmetic intensity. To better illustrate this analysis,
two basic blocks of common kernels with irregular processing power demands
are presented in Listing 1.1. The first basic block (BB0 ) performs a data copy
operation from one region of the memory to another, and the second basic block
(BB1 ) executes the dot product of two vectors.
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In the BB0, the whole basic block consists of PIM load and store instructions,
which implies that no processing power of SIMD units is needed and all FUs can
be turned off. In contrast to the BB0, the BB1 has 14 PIM instructions between
the second load instruction and the next memory access in the loop. For instance,
the 14 instructions take 52 cycles, or 41.6 ns using the default period (0.8 ns) of
the HMC’s logic layer, to be completed. As 14 SIMD instructions take 41.6 ns
considering 256-byte SIMD units, this represents about 20 GFlops. In order to
not hurt the total execution time, the maximum processing power must be kept
the same. However, the number of FU per SIMD unit can be significantly reduced
without performance degradation, while improving the energy of computation.

In this paper, we rely on a compiler that identifies and offloads instructions to
a PIM device as presented in [15]. Then, we test this heuristic to find the optimal
point regarding energy-efficiency in a case study architecture. Some alternatives,
such as vector size and Dynamic Voltage Frequency Scaling (DVFS) are consid-
ered. However, the need for a fine-grain reconfigurability leads to changes in the
execution mechanism that will be presented in Sect. 3.3.

Listing 1.1. Example of an assembly code snippet with two different basic blocks.
.BB0 :

PIM 256B LOAD VPU 0 Reg 0 , pimword ptr [ rax ]
PIM 256B LOAD VPU 0 Reg 1 , pimword ptr [ rax + 256]
PIM 256B STORE pimword ptr [ rbx ] , VPU 0 Reg 0
PIM 256B STORE pimword ptr [ rbx + 256 ] , VPU 0 Reg 1
add rbx , 256
add rax , 256
inc rcx
cmp rcx , 16384
jne BB0

.BB1 :
PIM 256B LOAD VPU 0 Reg 1 , pimword ptr [ rax ]
PIM 256B LOAD VPU 0 Reg 2 , pimword ptr [ rbx + 4∗ rcx ]
PIM 256B VFMUL VPU 0 Reg 1 , VPU 0 Reg 2 , VPU 0 Reg 1
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0 x3 f eec
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0 x1f4
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0xe
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B VSHUF64x2 VPU 0 Reg 1 , VPU 0 Reg 0 , VPU 0 Reg 0 , 0x1
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B PSHUFFLE VPU 0 Reg 1 , VPU 0 Reg 0 , 0 x f f f f f f f f f e e f f e e c
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B PSHUFFLE VPU 0 Reg 1 , VPU 0 Reg 0 , 0 x f f f f f f f f f e e d f 4 e 5
PIM 256B VFADD VPU 0 Reg 0 , VPU 0 Reg 0 , VPU 0 Reg 1
PIM 256B STORE pimword ptr [ rcx ] , VPU 0 Reg 0
add rax , 256
add rbx , 256
add rcx , 256
inc r12
cmp r12 , 16384
jne BB1

3.2 Vector Size Identification on Compiling Time

Regarding vectorization, traditional open-source compilers like GCC and com-
mercial compilers such as ICC have different approaches to identify vectorization
possibilities. Considering the most aggressive compiler flags which enable vec-
torization, different schedulings for vectorial instructions are related for GCC
and ICC assembly codes. The ICC tends to use only vectorial instructions for
a given set of elements if their operations can be converted into vectorial ver-
sions. When the number of elements is not an exact multiple of the available
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vector sizes, ICC issues masked vectorial instructions for those that do not fit
entirely in a vector unit. On the other hand, GCC issues as many vector instruc-
tions as possible for a specified vector width and scalar instructions for the
remaining vector operands. However, none of the state-of-the-art compilers per-
form an efficient analysis regarding energy consumption in vector operations.
Memory-intensive applications could have their processing power reduced with-
out performance degradation by selecting fewer VPUs and turning off the idle
ones. Moreover, the number of Load/Store Units impacts the maximum mem-
ory bandwidth achievable by an application, which reflects applications where
the memory bounds the execution time, rather than the number of processing
elements.

3.3 Dynamic Reconfiguration of Execution Mechanism

In a typical vector processor, as the degree of compute-boundness of an applica-
tion decreases, a significant amount of static energy is lost to keep a great number
of FUs in active mode. In applications that are mostly memory-bounded, the
full width of a large SIMD unit is used for a few cycles. This fact causes low uti-
lization rate and ineffective energy spendings to keep them in idle mode, mainly
when the architecture supports large SIMD units. As the number of active FUs
is reduced, the spatial operations of a SIMD instruction can be pipelined in a
few number of FUs, and they can be completed with a small penalty of a few
more cycles per instruction. As basic blocks may admit a variable increase of the
latency of modifying instructions, no performance degradation can be perceived,
since the processing latency is masked by the memory access latency in a loop.

A straightforward change in the control unit and data-path of an usual SIMD
unit is needed to provide variable width of this unit on the execute stage. Figure 2
presents a possible implementation of a VPU to have a single SIMD instruction
pipelined using different factors of two. In this mechanism, the original VPU has
32 active FUs, and Fig. 2A presents 16-FUs setup for compute-bounded basic
blocks. For memory-bounded application the SIMD unit can be reconfigured
to 2-FUs setup. These different setups provide a fine-grain reconfigurability of
SIMD instructions with low cost of reconfiguration. Thus, the PIM device can
change this configuration at each basic block or even at each instruction. Further,
energy savings are achieved, since static power is avoided by turning off some
FUs that would spend more if they were on. The analysis to find the near-optimal
setup has also to take into consideration the trade-off between cumulative static
energy and execution time.

4 Experimental Setup

In this section, we present the methodology and tools used to evaluate our mech-
anism.
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Fig. 2. Example of two reconfiguration setups. Figure A presents half of the total
functional units in active mode, thus being able to compute 128B per cycle. Figure B
represent a more constrained processing power capable of executing 8Bytes per cycle

4.1 The PIM Architecture for a Case Study

The micro-architecture Recon gurable Vector Unit (RVU) [11] was chosen as case
study architecture to support our experiments. Accordingly to [1], within a range
of recent proposal 3D-stacked PIM architectures, RVU not only fits in the power
and area constraints related to HMC logic layer but also is capable of exploring
higher memory bandwidth and DLP when compared to others state-of-art PIM
architectures. A RVU module comprises a set of 32 × 8-byte multi-precision
FUs, a Finit State Machine (FSM) to control the flow of RVU instructions and a
8×256-byte register file. For the HMC, each vault has one RVU module that can
operate independently in a parallel fashion. Thus, RVU provides up to 8192-byte
FU capacity of vectorial processing and can reach a peak compute power of 2.5
TFLOPS.

The RVU Instruction Set Architecture (ISA) extends the original Intel
Advanced Vector Extensions (AVX) keeping compatibility with legacy x86 host
instructions allowing a hybrid PIM code style. When the host processor fetches a
RVU instruction, it is treated as a store operation and sent to the PIM device to
be executed. RVU instructions can deal with operand sizes varying from 4 Bytes
to 256 Bytes at once. Additionally, RVU instances can aggregate their execution
to deal with bigger instructions ranging from 256 Bytes to 8192 Bytes at once.

4.2 Simulation Method

To experiment and evaluate the proposed techniques, the RVU architecture was
implemented for simulation and tests on GEM5 Simulator [16] as presented
in [17]. Since RVU extends AVX, and the Intel x86 host processor offloads
RVU instructions to HMC, GEM5 was adapted to support both AVX and RVU
instructions. For compiling the source code application tests and generating the
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binaries, Processing-In-Memory cOmpiler (PRIMO) [15] was used as a support
compiler tool. Table 1 summarizes the setup simulated, it comprises an Intel Sky-
lake micro-architecture as the host processor and an HMC RVU capable module
as main memory.

The energy and power models were obtained by synthesizing the VPU design
provided by [1]. This vector unit contains 32×32 bits and 32×64 bits, integer and
float-pointing FUs (adders and multipliers), an 8×32×64 bits register file, and a
FSM able to represent a single RVU instance. Supported by Cadence RTL Com-
piler tool, we extracted area, dynamic and static power for this implementation
using 32 nm process technology.

Further, we use a subset of BLAS routines, STREAM benchmark and other
miscellaneous kernel applications to represent different kernels behaviors, rang-
ing from mostly memory-bounded to mostly compute-bounded kernels. We var-
ied the number of active FUs from 32 to a single FU, which is given by the
#FUn labels in the following charts. Regardless of the data operands present in
the benchmarks, a single FU can operate on either 2× 32-bit operands or 64-bit
operand at a time.

Table 1. Baseline system configuration.

Intel Skylake Microarchitecture
4GHz; AVX-512 Instruction Set Capable; L3 Cache 16MB;
8GB HMC; 4 Memory Channels;
HMC
HMC version 2.0 specification;
Total DRAM Size 8GBytes - 8 Layers - 8Gbit per layer;
32 Vaults - 16 Banks per Vault; 4 high speed Serial Links;
RVU
1.25GHz; 32 Independent Functional Units; Integer and Floating-Point Capable;
Instructions from 4Bytes to 4096Bytes;
32 Independent Register Bank of 8x256Bytes each;
Latency (cycles): 1-alu, 3-mul. and 20-div. integer units;
Latency (cycles): 5-alu, 5-mul. and 20-div. floating-point units;
Interconnection between vaults: 5 cycles latency;

4.3 Results and Discussion

Figure 3 presents normalized memory bandwidth and processing power achieved
by PIM logic to process kernels with different behaviors. Figure 3a depicts a
pure streaming behavior where the number of FUs does not impact on the total
processing power, neither the average memory bandwidth. As this kernel appli-
cation is not compute-intensive, the memory bandwidth stands out when the
application makes use of the largest load/store instructions available. In contrast
to Stream Scale, the Polynomial Solver Equation shows an opposite behavior to
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streaming applications, as shown in Fig. 3c. The largest vector widths reach both
the highest values of memory bandwidth and processing power. In this case, not
only memory bandwidth is required by the application, but also the process-
ing power, which is achieved by the two reconfiguration setups (#FU32 and
#FU16). It is possible to notice that the combination of memory- and compute-
bound characteristics are found in the Bilinear Interpolation kernel. As shown
in Fig. 3b, the discrepancy of bandwidth and FLOPS is only observed on the
setups #FU1. One can notice that increasing the vector width also increases the
memory bandwidth, thus allowing the use of few FUs to reach the maximum
FLOPS.

Figure 4 shows speedup and energy results for the same kernels presented
in Fig. 3. To ease the comparison with other designs, the absolute values for
each baseline are given in the chart area (Fig. 4). The streaming-like applica-
tion in Fig. 4a shows that bandwidth limits the speedup. The reconfiguration
setup with fewer FUs is enough to consume data and obtain the same per-
formance of the setups with more FUs. To reach a higher performance, more
VPUs are required to allow larger load operations. However, this implies that
more hardware resources (register file, FSM, and FUs) will be kept in idle mode
wasting static power, thus reducing the energy efficiency of those configurations.
Similarly, Fig. 4c can reach the highest performance for different reconfiguration

Fig. 3. Total memory bandwidth and processing power for applications with different
processing requirements. (a) Stream Scale, (b) Bilinear Interpolation and (a) Polyno-
mial Solver
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setups, except for the #FU1. In Fig. 4d, different points can reach the low energy
consumption of computation. However, as aforementioned, this application com-
bines memory and compute-bound behavior, which means that the most efficient
points will occur when a better compromise between memory bandwidth and
processing power. Compute-intensive kernels are profoundly impacted by the
number of FUs available in SIMD units, as presented in Fig. 4e. Although the
highest performance is reached by using the RVU4096 with setups #FU32 or
#FU16, the most energy efficient configuration is achieved by using the setups
#FU16 and #FU8.

Despite Fig. 4 has presented different energy consumption and performance
points separately, a better metric to show the efficiency of the reconfiguration is
the Energy Delay Product (EDP). Figure 5 presents the EDP results of several
kernel applications. All columns were obtained by running the largest vector
width (RVU4096) and varying the reconfiguration setups. One can notice that
memory-bound applications must use fewer FUs to obtain significant energy effi-
ciency. On the other hand, compute-bound applications require higher FLOPS,
which is ruled by the number of FUs selected in the reconfiguration.

5 Related Work

There are several works related to exploring energy reduction techniques. The
studies mostly associated with PIM architectures, reconfigurable processors and
reconfigurable vectorial machines are presented in this section.

Processing-in-Memory: In [18], it is proposed an offload candidate mech-
anism which can be implemented as a compiler technique. The basic idea is
to statically estimate the memory bandwidth savings by whether moving or not
blocks of code to be processed near the memory based on dynamic system condi-
tions such as current bandwidth utilization. DRAMA (DRAM-Accelerator) [19]
proposes a PIM architecture where the host processor can offload computation
and data-intensive operations to Coarse-Grain Recon gurable Arrays (CGRAs)
stacked on top of DRAM devices. Similarly, [20] presents Heterogeneous Recon-
figurable Logic (HRL), a reconfigurable array for Near-Data Processing (NDP)
systems. HRL combines both coarse-grained and fine-grained logic blocks and
uses specialized units to support irregular data layouts in analytics workloads
effectively. The study represented in [21] reports huge performance speed-up
on basic operators of data analytic processing. This PIM architecture achieves
significant energy-efficiency by placing SIMD-enabled ARM cores on each HMC
vault, although it does not support floating point operations and neither presents
a technique or optimization to make better use of SIMD units. The work of [10]
presents an in-memory resistive design of a general-purpose SIMD co-processor.
They claim to allow better scalability and performance compared to a CMOS
SIMD processor. However, the main drawback resides on the significantly high
power density and low endurance inherent of Resistive Random Access Memories
(ReRAM).

Reconfiguration for Energy Reduction: In [22], the authors present a fine
grain power-gating technique to cope with future leakage power problem. This
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Fig. 4. Speed-up and energy consumption in three applications. (a) and (b) Stream
Scale, (c) and (d) Bilinear Interpolation, and (e) and (f) Polynomial Solver Equation

technique can be applied to a CGRA and can reduce up to 48% in real appli-
cations. In a different manner, the study of [23] describes a dynamic voltage
switching technique to reduce energy dissipation of dynamically reconfigurable
processors. This technique dynamically changes the supply voltage of each pro-
cessing element at the context-by-context basis. However, the energy overhead
due to voltage switching hinders the energy reduction, and a mapping optimiza-
tion was necessary to enable up to 12.5% of total energy savings.
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Fig. 5. Energy Delay Product (EDP) results for several application kernels

Reconfigurable Vectors: In [24], the authors propose Softbrain, a reconfig-
urable vectorial machine for accelerating stream-dataflow applications. Softbrain
comprises a control core to generate stream commands, a set of stream-engines
to transfer data with memories, and a deeply-pipelined reconfigurable dataflow
composed of CGRAs for parallel computation. Regarding regular architectures,
[25] proposes an integrated vector scalar mechanism coupled into an ARM micro-
architecture core. Their proposed design reuses scalar FUs to provide the exe-
cution for vectorial instructions. The main component is a block-based model
of implementation that groups vectorial computational operations to execute
them in a coordinated manner. ARM Scalable Vector Extension (SVE) defines
a SIMD unit able to operate on up to 2048-bit registers, and the SIMD unit
defined by the Vector Extension of RISC-V up to 1024-bit registers. However,
no physical implementation using the largest size is available yet, and no infor-
mation regarding power-gating techniques driven by the application’s demands
on these large registers was found.

6 Conclusions and Future Work

This paper presented a discussion introducing the necessity for the adoption
of reconfiguration techniques in vectorial Processing-in-Memory (PIM) architec-
tures to improve energy efficiency. We demonstrated that identifying and taking
advantage of the deviations in the compute-intensity to reconfigurable the cur-
rent PIM architecture can lead to energy savings. To do so, the reconfigurable
mechanism must be able to estimate intrinsic applications characteristics. Our
simulation results show that, for a set of memory-bounded applications, the num-
ber of Functional Units (FUs) on does not interfere in the system performance
so that energy savings can be achieved. On the other hand, compute-bounded
applications have their memory bandwidth as FLOPS dictated by the biggest
number of FUs active. As future works, compiler and hardware techniques for
application profiling and PIM reconfiguration will be studied.
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