NIM: an HMC-based Machine
for Neuron Computation

Geraldo F. Oliveira', Paulo C. Santos', Marco A. Z. Alves?, and Luigi Carro!

! Informatics Institute — Federal University of Rio Grande do Sul
Porto Alegre, Brazil
{gfojunior, pcssjunior, carro}@inf.ufrgs.br
2 Department of Informatics — Federal University of Paran4,
Curitiba, Brazil
mazalves@inf .ufpr.br

Abstract. Neuron Network simulation has arrived as a methodology to
help one solve computational problems by mirroring behavior. However,
to achieve consistent simulation results, large sets of workloads need to
be evaluated. In this work, we present a neural in-memory simulator
capable of executing deep learning applications inside 3D-stacked mem-
ories. With the reduction of data movement and by including a simple
accelerator layer near to memory, our system was able to overperform
traditional multi-core devices, while reducing overall system energy con-
sumption.

Keywords: Processing in Memory; Near-data processing; Neuron Sim-
ulator; Neural Networks; Hybrid Memory Cube; Vector operations;

1 Introduction

Neuron simulation has become a popular tool used to try to reproduce human
brain’s behavior, and a resource used to solve problems that require a learn-
ing capability from the system. For a given neuron in a Neural Network (NN),
its Natural Time Step (NTS) defines the maximum time it has to read data
from its neighbors, operate over input data, and output the resulted computa-
tion to subsequent neurons. Currently, the NTS for an Inferior-Olivary Nucleus
(ION) neural arrangement is 50us [1]. To keep up with system constraints, to-
day neural simulators aim to explore available application parallelism by using
HPC devices, usually composed of a mix of multi-core processors [2], GPU de-
vices [3], and accelerator units based on FPGAs [4]. However, those setting are
highly expensive and not energy efficient. A significant part of system energy
consumption comes from data movement throughout the whole system [5]. For
a neuron, data from its neighbors travel throughout the entire memory system
until it gets to the computational target core. Therefore, a neuron simulation
system presents a small rate of memory reuse, since only data from a single
layer would be useful for other neurons. This almost data-streaming behavior,

intrinsic of neuron simulators, motives moving computational resources closer to
the memory system.

Processing-in-Memory (PIM) aims to reduce system consumed energy and
improve performance by including computational units inside or close to mem-
ory elements [6]. Several commercial 3D-stacked memories are available in the
market nowadays, as Hybrid Memory Cube (HMC) [7], and High Bandwidth
Memory (HBM) [8]. We have chosen to work with HMC memory because it
has a concise public documentation, and also because it is technologically in-
dependent of any DRAM implementation. In the latest HMC specification [7],
one device is composed of four high-speed serial links, a logic layer of 32 vault
controllers, and four layers of DRAM memories connected via TSV through the
vault controller. A single HMC device can provide a total bandwidth up to 320
GB/s.

In this work, we proposed a PIM reconfigurable accelerator implemented in-
side a HMC that can simulate biologically meaningful neural networks of consid-
erable size. We highlight two distinct neuron’s model, one proposed by Hodgkin-
Huxley [9], and another by Izhikevich et. al. [10], since both works present a
complete and well accepted neural model, yet being different in structure and
complexity. The Neuron In-Memory (NIM) mechanism presented is capable of
simulating up to 12288 neurons inside the NT'S of 50us.

2 NIM: A Neuron in Memory Approach

In a generic NN architecture, each network layer is composed of several neurons,
which are connected throughout a fixed number of layers. In each layer, a given
neuron receives data from previous layers, and potentially from the external
world. This structure exposes both the available parallelism between neurons
from a single layer, as also the computational demand required for simulating
about the number of neurons per layer. One can notice that all neuron’s in-
put parameters can be arranged in a vector structure, positioning each neuron
parameter in sequential order. This arrangement enables to execute vector op-
erations over NN data. Also, the vector structure can be exploited directly by
HMC devices, both by taking advantage of its internal parallelism, as also by
implementing a PIM module, which can provide acceleration to NN applications.

Figure 1 shows in black boxes our mechanism distributed among HMC vaults.
Our work is based on the device presented in [11], which implements an HMC
accelerator capable of vector operations over up to 8KB chunks of data, and
it can also be reconfigured to work with different ranges of data as the work
proposed by [12]. However, due to the particularity of NNs applications, minor
changes in the [11] mechanism were necessary to accomplish the proposed tasks.

2.1 Computation: Minor Changes

The work presented in [11] provides plain Functional Units (FUs) capable of
computing data directly from main memory. In our work, more complex FUs

HMC vaults Fommmmmmmmemmee-
A

Write | | Read
buffer | | buffer

Memory
partitions |
(DRAM ;
layers) R ESREEE e
'
NIM :
Register H
Data bank
Logic
layer]
g Complex

Processing Units [|

Stat. Inst.i
NIM inst. H
'
I
'
I
'

Cross-bar switch
Links -
Stat/Rgst

NIM
sequencer

I

e M

Fig. 1: NIM mechanism overview.

have been implemented to execute NN task-intensive operations, such as expo-
nentiation and division, which can be reconfigurable at runtime. Our mechanism
operates at a frequency of 1 GHz. It is composed of 2,048 functional units (in-
teger + floating-point), and a small register file with 8 x 16 registers of 32 bits
each per vault. The integer FUs have a latency of 1 cycle for ALU, three cycles
for multiplication, 20 cycles for the division, and ten cycles for exponentiation.
For the floating-point FUs, the latencies are five cycles for ALU, five cycles for
multiplication, 20 cycles for the division, and 18 cycles for exponentiation.

We also included support to perform fast vector elements operation. [11]
counts with up to 64 FUs per HMC vault. Thus, all its FUs could be accessed
in parallel to execute a single vector addition. Nevertheless, the original register
file does not allow such operation, since each process occurs between different
registers. To avoid a slow execution that would be constituted by a sequence
of SHIFT and ADD commands, [11] data path was modified to execute intra-
register operations, and a new SUM instruction was added to [11] ISA. One
single vector operation unit can have different ranges of elements, from 64B to
256B.

Also, to schedule a given NN into our device, we simply travel through the
neuron parameters’ vector, placing each element evenly between memory banks,
in an interleaving fashion.

3 Experimental Methodology and Evaluation of NIM

This section describes all performed experiments and its following results. To
better understand all presented results, it is important to notice that the total
number of neurons simulated in a NN is equivalent to the product of the number
of neurons per layer N/L by the total number of layers L.

150
8Cores ENIM
125
100

75

50
) I I I I
; |
256 16 32 64 8 16

Layers 512 1024 128 192

Time (us)

32

32 Neurons/Layer 64 Neurons/Layer 128 Neurons/Layer 256 Neurons/Layer

Fig. 2: Izhikevich Equations - 50us Results

3.1 Methodology

To evaluate our work, we have made use of a cycle-accurate HMC simulator
[13]. We aimed to simulate the maximum number of neurons while respecting
the 50us NTS. Besides, we investigated how many neurons our device was able
to simulate in a more relaxed time window of 1ms. At both sets of experiments,
we considered as the best configuration result the total number of neurons that
could fit its simulation time window, while taking into account a tolerance factor
of 3% for 1ms experiments, and 1% for 50us.

The baseline considered was inspired by Intel SandyBridge processor micro-
architecture. The SandyBridge is configured with up to 8 cores and AVX2 in-
struction set capabilities (512 bits of operands per core), and in all cases, the
main memory used was a HMC device.

3.2 Performance Results

Izhikevich Application: Figure 2 depicts the results for NNs using Izhikevich
equations. As the amount of N/L increases, the number of connections between
neurons at different layers grows, therefore requiring more computational power

2.00
8 Cores ®WNIM

1.50

1.00
0.50 I I | I | I
0.00 I I I I

128

Layers = 2048 4096 1024 2048 4096 = 256 512 1024 64 256

TIme (ms)

32 Neurons/Layer 64 Neurons/Layer 128 Neurons/Layer 256 Neurons/Layer

Fig. 3: Izhikevich Equations - 1ms Results

150 8 Cores MNIM

125
100

75

50
) I I I I
: [
64 72 32 40 48 4 8 12 2 4

Layers

Time (us)

32 Neurons/Layer 64 Neurons/Layer 128 Neurons/Layer 256 Neurons/Layer

Fig. 4: Hodgkin-Huxley Equations - 50us Results

from the system. During simulation, our NIM mechanism was able to simulate
up to 12288 neurons within the 50us NTS (64 N/L, 192 L). In contrast, for
the same configuration, the baseline spent almost x2 more time than our NIM
device. It is important to notice that for a small number of N/L, the baseline
system performed better than our device. That happened because of two main
factors. First, the baseline’s CPU cores could execute instructions twice as fast as
our NIM device. Second, and more important, the number of N/L is responsible
for the amount of parallelism available. With more parallelism, a bigger array
composed of neuron’s input parameters can be sent to out device, thus providing
data for more FUs to operate upon (an ideal array size would be of 8 KBytes,
where all FUs would be operating).

Figure 3 shows the simulating results for the more relaxed scenario. When
the time limit ranges to 1ms, the performance of the NIM mechanism showed
the same behavior for N/L configured with up to 32 neurons. However, when
the NN is configured with more than 64 N/L, the number of layers becomes less
significant. The baseline can represent a maximum of 131072 neurons (64 N/L,
2048 L) while our NIM mechanism is capable of simulating the same amount
of neurons at half the baseline time. For 1ms, the NIM simulated up to 262144
neurons in total (64 N/L, 4096 L).

2.00

8 Cores BNIM

1.50
2
&
o 1.00
k|
=

0% I I I

0.00 I I
Layers =~ 1024 2048 256 512 768 128 192 16 48 64

32 Neurons/Layer 64 Neurons/Layer 128 Neurons/Layer 256 Neurons/Layer

Fig. 5: Hodgkin-Huxley 1ms Results.

8 cores ®NIM

Energy Consumption (%)
(=]
[=)

. |
Layers 40 72 768 2048

64 Neurons/Layer 32 Neurons/Layer 64 Neurons/Layer 32 Neurons/Layer

50us 1ms

Fig. 6: Hodgkin-Huxley Energy Results

Hodgkin-Huxley (HH) Application: Figure 4 shows the results for the HH
model with the time limit of 50us for both the baseline processor and for our
mechanism. For a small number of N/L, the baseline showed a better perfor-
mance than our device because of the little amount of parallelism available in
the network. However, with more parallelism available, NIM achieves a better
result. Within 50us NT'S, the baseline can simulate up to 2304 neurons (32 N/L,
72 L). In contrast, within the same time, our device can simulate up to 2560
neurons (64 N/L, 40 L).

Figure 5 illustrates that the operational frequency of the baseline impacts
the total number of neurons simulated. For the 1ms experiments, the baseline
could simulate up to 65536 neurons (32 N/L, 2048 L), while at the best NIM
configuration our device was able to simulate 49152 neurons (64 N/L, 768 L).

3.3 Energy Consumption

To measure system energy consumption, we used the McPat [14] tool, configured
to use 32nm technology for both systems. We have chosen to estimate energy
consumption for HH applications since their results showed a more heterogeneous
scenario. We compared the baseline and NIM configurations that represented the
maximum number of neurons simulated in each case.

Figure 6 depicts the percentage of energy consumed by our system when
compared to the baseline. One can notice that the amount of N/L impacts the
energy reduction our system can provide. For NNs with more N/L, our device
mitigates unnecessary data movement from main memory to cache devices, since
more N/L represent less data reuse. In contrast, increasing the number of layers
reduces NIM impact over energy consumption, once that the number of hit access
at cache memories will increase.

4 Related Work

In this section, we list several works that aim to simulate NNs. Each work tar-
gets distinct neuron models and networks topologies, making it not possible to

compare the presented work directly with others. However, our evaluation metric
(number of neurons in determined simulation time) can be used to approximate
our gains over previous ones. We have classified the presented related works into
four categories: GP-based, GPU-based, FPGA-based, and PIM-based.

In the first class, one could find works as [15] and [2]. Despite the large
processing capability provided by these works, they both suffer from the same
issue: neuron communication. In those cases, it is not possible to simulate NN
within the natural time step.

[3] is an example of GPU-based neuron simulators. However, the timing con-
straint needed to represent biologically accurate NN on a large scale is a challenge
for GPUs. Besides, GPUs are inefficient regarding energy and power.

In the third category, one could fit an extended number of works, as [4],
[16], and [17]. Even though using dedicated hardware to simulate large NN is an
effective approach, it is not as flexible as the other ones cited here.

Finally, similarly to our work, [18] aims to accelerate deep learning appli-
cations by exploiting PIM capabilities. In their work, the authors present an
architecture composed of four HMC devices incremented with CPU and GPU
modules at their logic layer. Even though [18] achieved good results, their module
is computationally expensive, and it is not energy efficient as our device.

5 Conclusions

In this paper, we presented Neuron In-Memory (NIM), a computational mech-
anism able to simulate large Neural Networks (NNs). Our work is based on the
vector processing capabilities extracted from NN applications that can be imple-
mented directly in memory, taking advantages of the broad bandwidth available
in modern 3D-stacked memory devices. To conclude, the presented NIM module
is capable of simulating NN of significant sizes in an embedded environment.
When compared with traditional multi-core environments, our mechanism pro-
vides system acceleration for large NN, while reducing overall energy consump-
tion. In future works, we aim to extend our device to enable networks with layers
of different sizes, thereby reducing data movement in small NN topologies.

References

1. J. R. De Gruijl, P. Bazzigaluppi, M. T. de Jeu, and C. I. De Zeeuw, “Climbing
fiber burst size and olivary sub-threshold oscillations in a network setting,” PLoS
Comput Biol, vol. 8, no. 12, p. €1002814, 2012.

2. M. Hines, S. Kumar, and F. Schiirmann, “Comparison of neuronal spike exchange
methods on a blue gene/p supercomputer,” Frontiers in Computational Neuro-
science, vol. 5, no. 49, 2011.

3. M. Wang, B. Yan, J. Hu, and P. Li, “Simulation of large neuronal networks with bio-
physically accurate models on graphics processors,” in Neural Networks (IJCNN),
The 2011 International Joint Conference on, July 2011, pp. 3184-3193.

10.

11.

12.

13.

14.

15.

16.

17.

18.

G. Smaragdos, S. Isaza, M. F. van Eijk, I. Sourdis, and C. Strydis, “Fpga-based
biophysically-meaningful modeling of olivocerebellar neurons,” in Proceedings of
the 2014 ACM/SIGDA International Symposium on Field-programmable Gate Ar-
rays, ser. FPGA ’14. New York, NY, USA: ACM, 2014, pp. 89-98.

F. Zenke and W. Gerstner, “Limits to high-speed simulations of spiking neural
networks using general-purpose computers,” Frontiers in Neuroinformatics, vol. 8,
p. 76, 2014. [Online]. Available: http://journal.frontiersin.org/article/10.3389/
fninf.2014.00076

R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson, “Near-data processing: Insights from a micro-46 workshop,” IEEE
Micro, vol. 34, no. 4, pp. 36—42, July 2014.

Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification Rev. 2.0,”
2013, http://www.hybridmemorycube.org/.

D. U. L. et. al. S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s high-bandwidth mem-
ory (hbm) stacked dram with effective microbump i/o test methods using 29nm
process and tsv,” in 2014 IEEE International Solid-State Circuits Conference Di-
gest of Technical Papers (ISSCC), Feb 2014, pp. 432-433.

A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” Bulletin of Mathematical
Biology, vol. 52, no. 1, pp. 25-71, 1990.

E. M. Izhikevich, “Simple model of spiking neurons,” Trans. Neur. Netw., vol. 14,
no. 6, pp. 15691572, Nov. 2003.

M. A. Z. Alves, M. Diener, P. C. Santos, and L. Carro, “Large vector extensions
inside the hme,” in 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), March 2016, pp. 1249-1254.

P. C. Santos, G. F. Oliveira, D. G. Tome, M. A. Z. Alves, E. C. Almeida, and
L. Carro, “Operand size reconfiguration for big data processing in memory,” in
2017 Design, Automation Test in Europe Conference Ezhibition (DATE), March
2017.

M. A. Z. Alves, M. Diener, F. B. Moreira, C. Villavieja, and P. O. A. Navaux, “Sin-
uca: A validated micro-architecture simulator,” in High Performance Computation
Conference, 2015.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi,
“The mcpat framework for multicore and manycore architectures: Simultaneously
modeling power, area, and timing,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 10, no. 1, p. 5, 2013.

K. Sakai, P. Sajda, S.-C. Yen, and L. H. Finkel, “Coarse-grain parallel computing
for very large scale neural simulations in the {NEXUS} simulation environment,”
Computers in Biology and Medicine, vol. 27, no. 4, pp. 257 — 266, 1997.

Y. Zhang, J. P. Mcgeehan, E. M. Regan, S. Kelly, and J. L. Nunez-Yanez, “Bio-
physically accurate foating point neuroprocessors for reconfigurable logic,” IEFE
Transactions on Computers, vol. 62, no. 3, pp. 599-608, March 2013.

M. Beuler, A. Tchaptchet, W. Bonath, S. Postnova, and H. A. Braun, Artificial
Neural Networks and Machine Learning — ICANN 2012: 22nd International Con-
ference on Artificial Neural Networks, Lausanne, Switzerland, September 11-14,
2012, Proceedings, Part I, 2012, ch. Real-Time Simulations of Synchronization in
a Conductance-Based Neuronal Network with a Digital FPGA Hardware-Core.

L. Xu, D. P. Zhang, and N. Jayasena, “Scaling deep learning on multiple in-memory
processors,” WoNDP: 3rd Workshop on Near-Data Processing, 2015.

