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Abstract—Automated tissue characterization is one of the most
crucial components of a computer aided diagnosis (CAD) system
for interstitial lung diseases (ILDs). Although much research has
been conducted in this field, the problem remains challenging.
Deep learning techniques have recently achieved impressive re-
sults in a variety of computer vision problems, raising expectations
that they might be applied in other domains, such as medical
image analysis. In this paper, we propose and evaluate a convo-
lutional neural network (CNN), designed for the classification of
ILD patterns. The proposed network consists of 5 convolutional
layers with 2 2 kernels and LeakyReLU activations, followed
by average pooling with size equal to the size of the final feature
maps and three dense layers. The last dense layer has 7 outputs,
equivalent to the classes considered: healthy, ground glass opacity
(GGO), micronodules, consolidation, reticulation, honeycombing
and a combination of GGO/reticulation. To train and evaluate
the CNN, we used a dataset of 14696 image patches, derived by
120 CT scans from different scanners and hospitals. To the best
of our knowledge, this is the first deep CNN designed for the
specific problem. A comparative analysis proved the effectiveness
of the proposed CNN against previous methods in a challenging
dataset. The classification performance ( ) demonstrated
the potential of CNNs in analyzing lung patterns. Future work
includes, extending the CNN to three-dimensional data provided
by CT volume scans and integrating the proposed method into a
CAD system that aims to provide differential diagnosis for ILDs
as a supportive tool for radiologists.
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I. INTRODUCTION

T HE term interstitial lung disease (ILD) refers to a group
of more than 200 chronic lung disorders characterized by

inflammation of the lung tissue, which often leads to scarring –
usually referred to as pulmonary fibrosis. Fibrosis may progres-
sively cause lung stiffness, reducing the ability of the air sacs
to capture and carry oxygen into the bloodstream and eventu-
ally leads to permanent loss of the ability to breathe. ILDs ac-
counts for 15 percent of all cases seen by pulmonologists [1]
and can be caused by autoimmune diseases, genetic abnormali-
ties and long-term exposures to hazardous materials. However,
the cause of ILDs is mostly unknown and the lung manifesta-
tions are described as idiopathic interstitial pneumonia (IIP). In
2002, an international multidisciplinary consensus conference,
including the American Thoracic Society (ATS) and the Euro-
pean Respiratory Society (ERS), proposed a classification for
ILDs [2], in order to establish a uniform set of definitions and
criteria for their diagnosis.
The diagnosis of an ILD involves questioning the patient

about their clinical history, a thorough physical examination,
pulmonary function testing, a chest X-ray and a CT scan. High
resolution computed tomography (HRCT) is generally consid-
ered to be the most appropriate protocol, due to the specific radi-
ation attenuation properties of the lung tissue. The imaging data
are interpreted by assessing the extent and distribution of the
various ILD textural patterns in the lung CT scan. Typical ILD
patterns in CT images are: reticulation, honeycombing, ground
glass opacity (GGO), consolidation and micronodules (Fig. 1).
However, in some cases, the diagnosis cannot be confirmed

radiologically. Although ILDs are a histologically hetero-
geneous group of diseases, they mostly have rather similar
clinical manifestations with each other, or even with different
lung disorders, so that differential diagnosis is fairly difficult
even for experienced physicians. This inherent property of
ILDs, as well as the lack of strict clinical guidelines and the
large quantity of radiological data that radiologists have to
scrutinize, explains the low diagnostic accuracy and the high
inter- and intra- observer variability, which has been reported to
be as great as 50% [3]. In ambiguous cases, additional invasive
procedures are required, such as bronchoalveolar lavage and
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Fig. 1. Examples of healthy tissue and typical ILD patterns from left to right:
healthy, GGO, micronodules, consolidation, reticulation, honeycombing, com-
bination of GGO and reticulation.

histological confirmation. However, performing a surgical
biopsy exposes the patient to a number of risks and increases
the healthcare costs, while even such methods do not always
provide a reliable diagnosis.
To avoid the dangerous histological biopsies, much research

has been conducted on computer aided diagnosis systems
(CAD) which could assist radiologists and increase their diag-
nostic accuracy. A CAD system for lung CT scan assessment
typically consists of three stages: (a) lung segmentation, (b)
lung disease quantification and (c) differential diagnosis. The
first stage refers to the identification of the lung border, the
separation of the lobes and in some cases the detection and
removal of the bronchovascular tree. The second stage includes
detection and recognition of the different tissue abnormalities
and estimation of their extent in the lung. Finally, the third stage
combines the previous results to suggest a probable differential
diagnosis. In this study, we focus on the second stage and
especially on the classification of lung tissue with different ILD
abnormalities.

II. RELATED WORK

In this section we provide an overview of the previous studies
on ILD pattern classification, followed by a brief introduction to
convolutional neural networks (CNN), which are employed in
the proposed methodology.

A. ILD Pattern Classification
Since ILDs are generally manifested as textural alterations in

the lung parenchyma, most of the proposed systems employ tex-
ture classification schemes on local regions of interest (ROIs)
or volumes of interest (VOIs), depending on the 2D or 3D ca-
pabilities of the CT imaging modality employed. By sliding a
fixed-scale classifier over pre-segmented lung fields, an ILD
quantification map of the entire lung is generated. The latter can
be used – either by physicians or CAD systems – to attempt the
final diagnosis. The main characteristics of such a system are
the chosen feature set and the classification method.
The first CAD systems for ILDs proposed classical feature

extraction methods to describe 2D texture, such as first order
gray level statistics, gray level co-occurrencematrices (GLCM),
run-length matrices (RLM) and fractal analysis [4], [5]. These
features were later merged and referred as the adaptive multiple
feature method (AMFM) [6]. AMFM was generally accepted
as the state of the art until new systems appeared that utilized
more modern texture description techniques and provided a new
perspective to the problem. Such systems employed filter banks
[7]–[9], morphological operations followed by geometric mea-
sures [10], wavelet and contourlet transformations [11], [12],
histograms of oriented gradients [8] and local binary patterns

(LBP) [13]. Moreover, some systems exploited the ability of
MDCT scanners to achieve almost isotropic 3D sub-millimeter
resolution and expanded some of the already proposed 2D tex-
ture feature sets into three dimensions [14]–[17]. One of the
latest studies on volumetric data proposed the use of multiscale
3D Riesz wavelet frames coupled with wavelet pyramids [18].
The previously presented systems have used hand-crafted

features to describe lung tissue, which often fail to adapt to
new data or patterns. More recent studies adopted learned
schemes for feature extraction which customize the feature set
to the training data and have achieved promising results. Most
of these use unsupervised techniques, such as bag of features
[19]–[21] and sparse representation models [22]–[24]. In these
methods, a set of texture atoms or textons is identified by using
k-means and k-SVD, on already described local patches. The
resulting set of textons constitutes a problem-specific dictionary
and every local structure in the image is represented by the
closest texton or a linear combination of the entire set. The final
global descriptor usually consists of the histogram of textons
appearing in the image. Another tool which has be used for
extracting learned features is the restricted Boltzmann machine
(RBM). RBMs are generative artificial neural networks (ANNs)
that are able to capture and reproduce the statistical structure
of the input and were employed in [25] for learning multi-scale
filters with their responses as the features.
Regardless of whether handcrafted or learned features are

used, it is also crucial and challenging to choose an appropriate
classifier that can optimally handle the properties of the cre-
ated feature space. Many different approaches can be found in
the literature. These use linear discriminant (LD) [5], [7], and
Bayesian [6], [14], classifiers, k-nearest neighbors (kNN) [7],
[13], [16], [20], ANN [10], random forest [9] and support vector
machines (SVM) with linear [22], [25], polynomial [8] or radial
basis function (RBF) [12], [19] kernels. Furthermore, multiple
kernel learning classifier (m-MKL) was utilized in [11], while
in [23], the minimum reconstruction error served as a classifica-
tion criterion, after reconstructing the patch using class-specific
dictionaries.
Some attempts have recently also been made to use deep

learning (DL) techniques and especially CNNs, after their im-
pressive performance in large scale color image classification
[26]. Unlike other feature learning methods that build data rep-
resentation models in an unsupervised manner, CNNs learn fea-
tures and train an ANN classifier at the same time, by mini-
mizing the classification error. Although the term DL implies
the use of many consecutive learning layers, the first attempts
on lung CT images adopted shallow architectures. In [27], a
modified RBM was used for both feature extraction and clas-
sification of lung tissue, incorporating some features of CNNs.
Weight sharing was used among the hidden neurons, whichwere
densely connected to label (output) neurons, while the whole
network was trained in a supervised manner, using contrastive
divergence and gradient descent. In [28], the authors designed
a CNN with one convolutional layer and three dense layers
and trained it from scratch. However, the shallow architecture
of the network cannot leverage the descriptive ability of deep
CNNs. The pre-trained deep CNN of [26] (AlexNet) was used
in [29] to classify whole lung slices after fine-tuning with lung
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CT data. AlexNet was designed to classify natural color im-
ages with input size 224 224, so the authors had to resize the
images and artificially generate three channels by applying dif-
ferent Hounsfield unit (HU) windows.Moreover, the substantial
differences in the domains of general color images and med-
ical images raise doubts regarding the transfer of knowledge
between them, while classifying whole slices may only provide
very rough quantification of the disease.

B. Convolutional Neural Networks
CNNs are feed-forward ANN inspired by biological pro-

cesses and designed to recognize patterns directly from pixel
images (or other signals), by incorporating both feature extrac-
tion and classification. A typical CNN involves four types of
layers: convolutional, activation, pooling and fully-connected
(or dense) layers. A convolutional layer is characterized by
sparse local connectivity and weight sharing. Each neuron of
the layer is only connected to a small local area of the input,
which resemble the receptive field in the human visual system.
Different neurons respond to different local areas of the input,
which overlap with each other to obtain a better representation
of the image. In addition, the neurons of a convolutional layer
are grouped in feature maps sharing the same weights, so the
entire procedure becomes equivalent to convolution, with the
shared weights being the filters for each map. Weight sharing
drastically reduces the number of parameters of the network
and hence increases efficiency and prevents overfitting. Con-
volutional layers are often followed by a non-linear activation
layer, in order to capture more complex properties of the input
signal. Pooling layers are also used to subsample the previous
layer, by aggregating small rectangular subsets of values. Max
or average pooling is usually applied by replacing the input
values with the maximum or the average value, respectively.
The pooling layers reduce the sensitivity of the output to
small input shifts. Finally, one or more dense layers are put
in place, each followed by an activation layer, which produce
the classification result. The training of CNNs is performed
similarly to that of other ANNs, by minimizing a loss function
using gradient descent based methods and backpropagation of
the error.
Although the concept of CNNs has existed for decades,

training such deep networks with multiple stacked layers was
achieved only recently. This is mainly due to their extensive
parallelization properties, which have been coupled with mas-
sively parallel GPUs, the huge amounts of available data, and
several design tricks, such as the rectified linear activation units
(ReLU). In 2012, Krizhevsky et al. [26] won the ImageNet
Large-Scale Visual Recognition Challenge, convincingly out-
performing the competition on a challenging dataset with 1000
classes and 1.2 million images. The proposed deep CNN, also
known as AlexNet, consists of five convolutional layers with
ReLU activations, some of which are followed by max-pooling
layers, and three dense layers with a final 1000-way softmax.
The network was trained with stochastic gradient descent
(SGD) with a momentum term, maximizing the multinomial lo-
gistic regression objective. Deep architectures permit learning
of data representations in multiple levels of semantic abstrac-
tion, so even high-level visual structures like cars or faces can

be recognized in the last layers by combining low-level features
of the first, such as edges. Nevertheless, designing a deep CNN
for a specific problem is not trivial, since a large number of
mutually dependent parameter values and algorithmic choices
have to be chosen. Although much research has been conducted
in recent years on deep CNNs for color image classification,
very little has been done on the problems of texture recognition
and medical image analysis.
In this paper, we propose a deep CNN for the classification of

ILD patterns that exploits the outstanding descriptive capability
of deep neural networks. The method has been evaluated on a
dataset of 120 cases from two hospitals and the results confirm
its superiority compared to the state of the art. To the best of our
knowledge, this is the first time a deep CNN has been designed
and trained for lung tissue characterization. Finally, we provide
empirical rules and principles on the design of CNN architec-
tures for similar texture classification problems.

III. METHODS

In this section, we first describe the dataset used in the study,
followed by the proposed CNN. The definition of the input data
and desired outputs prior to the actual methods provides a better
definition of the problem and thus a better understanding of the
methods.

A. Data
The dataset used for training and evaluating the proposed

method was made using two databases of ILD CT scans from
two different Swiss university hospitals:
• The first is the publicly available multimedia database of
ILDs from the University Hospital of Geneva [30], which
consists of 109 HRCT scans of different ILD cases with
512 512 pixels per slice. Manual annotations for 17 dif-
ferent lung patterns are also provided, along with clinical
parameters from patients with histologically proven diag-
noses of ILDs.

• The second database was provided by the Bern University
Hospital, “Inselspital”, and consists of 26 HRCT scans of
ILD cases with resolution 512 512.

The scans were produced by different CT scanners with slightly
different pixel spacing so a preprocessing step was applied,
which rescaled all scans to match a specific spacing value (i.e.,
0.4 mm). However, the use of different reconstruction kernels
by the scanners, still remains an open issue that complicates the
problem even further. The image intensity values were cropped
within the window [ , 200] in HU and mapped to [0, 1].
Experienced radiologists from the “Inselspital” annotated (or
re-annotated) both databases by manually drawing polygons
around the six most relevant ILD patterns, namely GGO,
reticulation, consolidation, micronodules, honeycombing and
a combination of GGO and reticulation. Healthy tissue was
also added, leading to 7 classes. The annotation focused on
typical instances of the considered ILD patterns, excluding
ambiguous tissue areas that even experienced radiologists find
difficult to classify. Hence, tissue outside the polygons may
belong to any pattern, including that considered. Moreover, the
annotators tried to avoid the bronchovascular tree which (in
a complete CAD system) should be segmented and removed,
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Fig. 2. Example of generating image patches through the annotations of a CT
slice. The lung field is displayed with transparent red. The polygons are the
ground truth areas with considered pathologies. The patches have 100% overlap
with the lung, at least 80% overlap with the ground truth and 0% overlap with
each other.

before applying the fixed-scale classifier. Annotation of the
lung fields was also performed for all scans.
The considered classes appeared in the annotations of 94 out

of the 109 scans of the Geneva database, to which the 26 cases
from “Inselspital” were added, giving a total of 120 cases. On
the basis of the ground truth polygons of these cases, we ex-
tracted in total 14696 non-overlapping image patches of size 32
32, unequally distributed across the 7 classes. Fig. 2 presents

an example of how patches are generated through the annota-
tions of a CT slice. For each pattern, Table I provides the number
of ground truth polygons, the average and standard deviation of
their area, the number of cases in which it was annotated and the
number of extracted patches. The healthy pattern was only an-
notated in 8 cases, which however proved to be enough, since its
texture does not present large deviations. It has to be noted that
one case may contain multiple types of pathologies, so the sum
of cases in Table I is larger than 120. The patches are entirely
included in the lung field and have an overlap with the ground
truth polygons of at least 80%. For each class, 150 patches were
randomly selected for the test and 150 for the validation set. The
choice of 150 was made based on the patch number of the rarest
class (i.e., honeycombing) leaving about 50% of the patches for
training. On the remaining patches, data augmentation was em-
ployed in order to maximize the number of training samples and
equalize, at the same time, the samples' distribution across the
classes. Data augmentation has often been employed in image
classification, in order to increase the amount of training data
and prevent over-fitting [26]. To this end, 15 label-preserving
transformations were used, such as flip and rotation, as well
as the combinations of the two. For each class, the necessary
number of augmented samples was randomly selected, so all
classes would reach the training set size of the rarest class, i.e.,
5008, leading to 35056 equally distributed training patches.

B. Proposed CNN

In order to decide on the optimal architecture and configu-
ration of a CNN, one should first comprehend the nature of the

TABLE I
STATISTICS OF THE DATABASE. (H: HEALTHY, GGO: GROUNDGLASS OPACITY,

MN: MICRONODULES, CONS: CONSOLIDATION,
RET: RETICULATION, HC: HONEYCOMBING)

problem considered – in this case – the classification of ILD
patterns. Unlike arbitrary objects in color images, which in-
volve complex, high-level structures with specific orientation,
ILD patterns in CT images are characterized by local textural
features. Although texture is an intuitively easy concept for hu-
mans to perceive, formulating a formal definition is not trivial,
which is the reason for the many available definitions in the
literature [31]. Here, we define texture as a stochastic repetition
of a few structures (textons) with relatively small size, com-
pared to the whole region. Image convolution highlights small
structures that resemble the convolution kernel throughout an
image region, and in this way the analysis of filter bank re-
sponses has been successfully used in many texture analysis
applications. This encourages the use of CNNs to recognize
texture by identifying the optimal eproblem-specific kernels;
however some key aspects stemming from our definition of
texture have to considered: (i) The total receptive field of each
convolutional neuron with respect to the input (i.e., the total
area of the original input “seen” by a convolutional neuron)
should not be larger than the characteristic local structures
of texture, otherwise non-local information will be captured,
which is irrelevant to the specific texture, (ii) since texture
is characterized by fine grained low-level features, no pooling
should be carried out between the convolutional layers, in order
to prevent loss of information, (iii) each feature map outputted
by the last convolutional layer should result in one single fea-
ture after pooling, in order to gain some invariance to spatial
transformations like flip and rotation. Unlike color pictures that
usually have high-level geometrical structure (e.g., the sky is
up), a texture patch should still be a valid sample of the same
class when flipped or rotated.
1) Architecture: On the basis of these principles, we de-

signed the network presented in Fig. 3. The input of the network
is a 32 32 image patch, which is convolved by a series of 5
convolutional layers. The size of the kernels in each layer was
chosen to be minimal, i.e., 2 2. The use of small kernels that
lead to very deep networks was proposed in the VGG-net [32],
which was ranked at the top of ILSVRC 2014 challenge by em-
ploying 3 3 kernels and up to 16 convolutional layers. Here,
we go one step further by shrinking the kernel size even more
to involve more non-linear activations, while keeping the total
receptive field small enough (6 6) to capture only the relevant
local structure of texture. Each layer has a number of kernels
proportional to the receptive field of its neurons, so it can handle
the increasing complexity of the described structures. The size
of the rectangular receptive field is 2 2 for the first layer and is
increased by 1 in each dimension, for each layer added, leading
to an area of for the layer. Hence, the number of
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Fig. 3. Architecture of the proposed CNN for lung pattern classification. The value of parameter was set to 4.

kernels we use for the layer is , where the param-
eter depends on the complexity of the input data and was set to
4 after relevant experiments. An average pooling layer follows,
with size equal to the output of the last convolutional layer (i.e.,
27 27). The resulting features, which are equal to the number
of features maps of the last layer i.e., , are fed to a series
of 3 dense layers with sizes , and 7, since 7 is the number
of classes considered. The use of large dense layers accelerated
convergence, while the problem of overfitting was solved by
adding a dropout layer before each dense layer. Dropout can be
seen as a form of bagging; it randomly sets a fraction of units to
0, at each training update, and thus prevents hidden units from
relying on specific inputs [33].

Activations: It is well-known that the choice of the acti-
vation function significantly affects the speed of convergence.
The use of the ReLU function has been
proven to speed up the training process many times compared
to the classic sigmoid alternative. In this study, we also noticed
that convolutional activations have a strong influence on the
descriptive ability of the network. Driven by this observation
and after experimenting with different rectified activations, we
propose the use of LeakyReLU [34], a variant of ReLU, for
activating every convolutional layer. Unlike ReLU, which to-
tally suppresses negative values, leaky ReLU assigns a non-zero
slope, thus allowing a small gradient when the unit is not active
((1)).

else (1)

where is a manually set coefficient.
LeakyReLU was proposed as a solution to the “dying ReLU”

problem, i.e., the tendency of ReLU to keep a neuron constantly
inactive as may happen after a large gradient update. Although
a very low negative slope coefficient (i.e., ) was origi-
nally proposed, here we increase its value to 0.3, which consid-
erably improves performance. Similar observations have also
been reported in other studies [35]. A very leaky ReLU seems
to be more resilient to overfitting when applied to convolutional
layers, although the exact mechanism causing this behavior has
to be further studied. For the dense part of the network, the
standard ReLU activation was used for the first two layers and

softmax on the last layer, to squash the 7-dimensional output
into a categorical probability distribution.

Training Method: The training of an ANN can be viewed
as a combination of two components, a loss function or training
objective, and an optimization algorithm that minimizes this
function. In this study, we use the Adam optimizer [36] to min-
imize the categorical cross entropy. The cross entropy repre-
sents the dissimilarity of the approximated output distribution
(after softmax) from the true distribution of labels. Adam is a
first-order gradient-based algorithm, designed for the optimiza-
tion of stochastic objective functions with adaptive weight up-
dates based on lower-order moments. Three parameters are as-
sociated with Adam: one is the learning rate and the other two
are exponential decay rates for the moving averages of the gra-
dient and the squared gradient. After relevant experiments, we
left the parameters to their default values namely, learning rate
equal to 0.001 and the rest 0.9 and 0.999, respectively. The
initialization of the convolutional layers was performed using
orthogonal matrices multiplied with a scaling parameter equal
to 1.1, while a uniform distribution was utilized for the dense
layers, scaled by a factor proportional to the square root of the
layer's number of inputs [37]. The weight updates are performed
in mini-batches and the number of samples per batch was set to
128. The training ends when the network does not significantly
improve its performance on the validation set for a predefined
number of epochs. This number is set to 200 and the perfor-
mance is assessed in terms of average f-score ( ) over the
different classes ((2)) (see Section IV). An improvement is con-
sidered significant if the relative increase in performance is at
least 0.5%.

IV. EXPERIMENTAL SETUP AND RESULTS
This section focuses on the presentation and discussion of the

results. Before that, we describe the experimental setup namely,
the chosen evaluation strategy and some details on the imple-
mentation of the methods.

A. Experimental Setup
1) Evaluation: The evaluation of the different ILD patch

classification approaches is based on a train-validation-test
scheme. The actual training of the methods was carried-out on
the training set, while the validation set was used for fine tuning
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TABLE II
PERFORMANCE OF THE CNN FOR DIFFERENT CONFIGURATIONS

the hyper-parameters; the overall performance of each system
was assessed on the test set. As principle evaluation measure,
we used the average F-score over the different classes (2), due
to its increased sensitivity to imbalances among the classes; the
overall accuracy is also computed (3). It has to be noted that the
presented performances are not comparable to performances
reported in the literature due to the use of different datasets
and the consideration of different patterns. However, we trust
that the difficulty of a dataset may only affect the absolute
performance of methods and not their relative performance
rank.

(2)

where

(3)

2) Implementation: The proposed method was imple-
mented1 using the Theano [38] framework, while for AlexNet
and VGG-Net we used Caffe [39]. Methods which do not
involve convolutional networks were coded in python and
MATLAB. All experiments were performed under a Linux OS
on a machine with CPU Intel Core i7-5960X @ 3.50 GHz,
GPU NVIDIA GeForce Titan X, and 128 GB of RAM.

1An implementation of the proposed method is provided by the authors as
supplementary material, and can be downloaded at http://ieeexplore.ieee.org.

B. Results
This section presents the experimental results and is split into

three parts. Firstly, we present a set of experiments that justify
the choice of the different components and the tuning of the
hyper-parameters. A comparison of the proposed method with
previous studies follows and finally, an additional analysis of
the system's performance is given.
1) Tuning of Hyper-Parameters: Here we demonstrate the

effect of the most crucial choices for the architecture and the
training procedure. Table II demonstrates the classification per-
formance for different configurations of the network's architec-
ture, as well as the training time needed. The proposed configu-
ration, presented in bold, yielded an of 0.8547. Using the
LeakyReLUwith the originally proposed parameter, reduces the
performance by roughly 5% and the use of standard ReLU by
a further 2%. Increasing the size of the kernels to 3 3 also
resulted in a drop by 4% in performance, accompanied by a
significant increase in the epoch time ( ). The larger ker-
nels increased the total receptive field of the network to 11 11,
which proved to be too big for the characteristic local structures
of the considered textures. By keeping the 3 3 kernels and
increasing the image resolution by 50%, each training epoch
became slower by more than 20 , but still without reaching
the proposed performance. When we just upsampled the input
image while using the 2 2 kernels, the result was again signif-
icantly inferior to that proposed, since the receptive field rela-
tively to the input size was smaller than optimal. By altering the
number of convolutional layers, we can infer that the optimal
architecture will have 5-6 layers that correspond to a total re-
ceptive field of 6 6-7 7. In this study, we propose the use of
5 convolutional layers, preferring efficiency to a small increase
in performance.
To identify the optimal number of kernels, we experimented

with the multiplier. The corresponding results show that 4 is
the optimal choice, both in terms of performance and efficiency.
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TABLE III
PERFORMANCE OF THE PROPOSED CNN WITH DIFFERENT TRAINING OPTIONS

A couple of experiments were also conducted to study the ef-
fect of using a constant number of kernels in each convolutional
layer. Firstly, we chose 17 kernels in order to match the epoch
time of the proposed configuration, which resulted in a perfor-
mance drop of about 1%. With 36 kernels per layer, the results
were comparable to that proposed, having though an epoch time
almost 3-fold longer. This experiment showed that the choice
of the distribution of kernels in the convolutional layers is ba-
sically a matter of efficiency and does not so drastically affect
the accuracy of the system, assuming that a sufficient number
of kernels is used.
Changing the size of the pooling layer from 100% of the last

feature map to 50% or 25%, resulted in a drop in of more
than 6% and 9%, respectively. By splitting the feature map in
multiple pooled regions, different features are generated for the
different areas of the image, so that the CNN is highly non-in-
variant to spatial transformations like flip and rotation. In an-
other experiment, max pooling was employed instead of av-
erage, yielding a result that was inferior by nearly 4%. Although
max pooling is the common choice for most CNNs and proved
to be much faster in terms of convergence, in our problem av-
erage seems to be more effective. Finally, when we removed the
dropout layers, we observed a decline in of more than 6%,
an effect obviously due to overfitting.
Table III demonstrates the effects of using different opti-

mizers and loss functions for training the CNN. The parameters
for each optimizer have been tuned accordingly on the valida-
tion set. For the SGD we used a learning rate of 0.01 with a
momentum of 0.95, while for AdaGrad we used 0.001 learning
rate. Minimizing the categorical cross-entropy by the Adam op-
timizer yielded the best results in a small number of iterations.
SGD follows, with about 1% lower performance and AdaGrad
with even higher drop in performance of 3%. Finally, we also
employed Adam to minimize the mean squared error (MSE),
which yielded comparable results.
In Fig. 4, the convergence of the three different optimizers

is illustrated in terms of the validation loss over the epochs.
AdaGrad starts with a rapid descent, but soon stops improving
probably due to the quickly reduced learning rate. Adam and
SGD seem to perform almost equally, but here we chose
Adam because of the slightly better performance as shown
in Table III and its stable behavior independently from its
parameters.
2) Comparison With the State of the Art: Table IV provides a

comparison of the proposed CNN with state-of-the-art methods
using handcrafted features and different classifiers. All the
methods were implemented by the authors and the parameters
for each one were fine-tuned using a trial and error procedure on
the validation set. The results prove the superior performance

Fig. 4. Comparison of the convergence speed between three optimizers.

TABLE IV
COMPARISON OF THE PROPOSED WITH STATE-OF-THE-ART METHODS

USING HANDCRAFTED FEATURES

TABLE V
COMPARISON OF THE PROPOSED METHOD WITH OTHER CNNS

of the proposed scheme that outperformed the rest by 8% to
14%.
Table V provides a comparison with other CNNs. The first

row corresponds to a shallow network with just one convolu-
tional and three dense layers, which constitutes the first CNN-
based approach to the problem, to the best of our knowledge.
The fairly low results achieved by this network on our dataset,
could be due to several reasons: (i) the 16 kernels used for the
convolutional layer are not enough to capture the complexity of
the problem, (ii) the use of a 2 2 max pooling results in 169
local features per feature map, that describe a high-level spatial
distribution not relevant to the problem, and (iii) the shallow ar-
chitecture prevents the network from learning highly non-linear
features. The second CNN we test is the LeNet [40], a network
designed for character classification. It has two convolutional
layers, each followed by pooling and three dense layers. The
first layer uses 6 kernels and the second 16, both with the same
size 5 5. The results produced on our dataset are similar to the
previous CNN for similar reasons.
Furthermore, we evaluated the performance of the

well-known AlexNet [26] and VGG-Net-D [35], two networks
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Fig. 5. Filter of the first layer of AlexNet by (a) training from scratch on our
data, (b) fine-tuning the pre-trained on ImageNet version.

much larger and deeper than the previous, with the first having
5 convolutional layers and the second 13. The two networks
were designed for the classification of 224 224 color images,
so in order to make our data fit, we rescaled the 32 32 patches
to 224 224 and generated 3 channels by considering 3 dif-
ferent HU windows according to [32]. First, we tried training
the AlexNet from scratch on our data. However, the size of this
kind of networks requires very large amounts of data, in order
to be trained properly. The achieved accuracy was in the order
of 70% and the noisy and low-detailed filters obtained from the
first convolutional layer (Fig. 5(a)) show that the size, as well
as the scale of the network, are too large for our problem. To
overcome the problem of insufficient data we fine-tuned the
already trained (on ImageNet) AlexNet, which is currently the
most common technique for applying it to other problems. The
results were improved by about 5% showing that for training
large CNNs, the size of the used set can be more important
than the type of data. However, by looking at the filters of the
first layer (Fig. 5(b)) one may notice that the scale of the edges
does not match our problem, considering that the 11 11 filters
correspond to less than 2 2 in our input image. Finally, we
tested the pre-trained (on ImageNet) VGG-Net after fine-tuning
it, since training a network with that size from scratch would
need even more data than AlexNet. The network achieved
an improvement of about 2% compared to AlexNet probably
due to the smaller size of kernels that permit the use of more
convolutional layers, however the result is still inferior to that
proposed.
For a more detailed comparison at different operating

points we also performed a receiver operating characteristic
(ROC) analysis for AlexNet, AlexNet pre-trained (AlexNetP),
VGG-Net, the method by Sorensen et al. [13] and the proposed
CNN. Fig. 6 presents the ROC curves for each of the compared
methods and each of the considered classes using a one-vs-all
scheme. The average ROC curves over the different classes are
presented in the last chart of Fig. 6. For each ROC, the area
under the curve (AUC) was computed and the 95% confidence
interval was plotted according to [41]. The comparison showed
that the proposed method achieved the highest AUC on each
of the 7 classes. To test the statistical significance of the AUC
differences, a statistical analysis was performed based on
[42] and using 10 000 bootstraps. The results of the analysis
confirmed the statistically significant ( ) superior
performance of the proposed CNN against all methods, when

Fig. 6. ROC analysis for the proposed CNN and four previous methods:
AlexNet, AlexNet pre-trained (AlexNetP), VGG-Net and the method by
Sorensen et al. [13]. The analysis was performed per class (one-vs-all) while
the average over all classes is also presented. For each ROC, the AUC is given
and the 95% confidence interval is plotted.

comparing on the most difficult patterns i.e., consolidation,
reticulation, honeycombing and reticulation/GGO. For the rest
of the patterns (healthy, GGO and micronodules) the difference
between the proposed method and the pre-trained AlexNet was
not considered significant , while for
GGO the difference from VGG-Net was also non-significant
( ). Finally, the superiority of the proposed method
after averaging over all considered classes was also found to
be statistically significant ( ). These results are in
line with the corresponding ROC curves of Fig. 6, where large
distance between curves correlates with statistically significant
differences.
Furthermore, we conducted an experiment to estimate the

efficiency of the different CNNs when used to recognize the
pathologies of an entire scan by sliding the fixed-scale classi-
fier on the images. By using the minimal step for sliding the
window, i.e., 1, the proposed CNN needed 20 seconds to clas-
sify the whole lung area in the 30 slices of an average-sized
HRCT scan. The corresponding time needed by AlexNet was
136 and by VGG-Net 160 seconds. By increasing the step to 2,
which still produces a sufficiently precise pathology map – the
time needed for any method is reduced by a factor of 4.
Concluding, the two tested deep CNNs showed inferior

performance mainly because they do not comply with the prin-
ciples described in Section III-B: (i) their overall receptive
field relatively to the input image is larger than needed, (ii) the
use of pooling between the convolutional layers results in loss
of information, (iii) the use of small size for the last pooling
makes the extracted features position dependent. Moreover,
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Fig. 7. Loss curves during the training of the proposed system.

Fig. 8. The 2 2 kernels from the first layer of the proposed CNN.

other algorithmic choices, like the standard ReLU and the max
pooling, may have affected the result, as shown in Table II, as
well as the different input size. Finally, apart from the relatively
low accuracy, the efficiency of these very large networks could
also be an issue for using them in this kind of applications. The
slower prediction will multiply the operating time by at least a
factor of 7, making them prohibitive for the clinical practice.
3) Analysis of the System's Performance: In this paragraph,

we provide additional insight into the performance of the
proposed method. In Fig. 7, we show the loss and performance
curves during the training of the system. The blue and orange
descending curves correspond to the loss function values for
the training and for the validation sets during training. The
two curves start to diverge from one another after around 100
epochs; however, validation loss continues to descend slightly
until roughly 200 epochs. The gray vertical line indicates the
best model found. The yellow and purple curves represent the
accuracy and on the validation set and after a few epochs
they overlap almost completely, showing that when the network
gets sufficiently trained, it treats the classes fairly balanced.
The 16 kernels for the first convolutional layer of the best

model are illustrated in Fig. 8. Although the small number and
size of the kernels do not permit much discussion, one may no-
tice their differential nature that captures fundamental edge pat-
terns. These patterns grow in size and complexity while passing
through consecutive convolutional layers, so that the last layer
describes the micro-structures that characterize texture.
Fig. 9(a) shows the confusion matrix of the proposed method

for the seven considered classes. The confusion between
honeycombing and reticular patterns is due to their common
fibrotic nature and contributes a major share to the overall
error. Fig. 10 presents some difficult cases of these patterns that
were misclassified, together with the corresponding output of

Fig. 9. Confusion matrices of: (a) the proposed method, (b) the method by
Sorensen et al. [13]. The entry in the th row and th column corresponds to
the percentage of samples from class that were classified as class . H: healthy
tissue; MN: micronodules; GGO: ground glass opacity; Cons: consolidation;
Ret: reticulation, HC: honeycombing.

Fig. 10. Examples of misclassified patches by the proposed CNN. The output
of the network is displayed below each patch.

the network. The relatively high misclassification rate between
the combined GGO/reticulation and the individual GGO and
reticulation patterns could be justified by the fact that the
former constitutes an overlap of the latter. This combinational
pattern is particularly difficult for every classification scheme
tested, and it has not been considered in most of the previous
studies. We decided to include it here, because its presence
is very relevant to the discrimination between idiopathic pul-
monary fibrosis (IPF) and non-specific interstitial pneumonia
(NSIP), which are the most common ILDs. Fig. 9(b) presents
the corresponding confusion matrix for the method by Sorensen
et al. [13]. The results show that the higher misclassification
rate is mainly caused by the reticular patterns, which require
an accurate description of texture apart from the first-order
description of intensity values.

V. CONCLUSION
In this paper, we proposed a deep CNN to classify lung CT

image patches into 7 classes, including 6 different ILD patterns
and healthy tissue. A novel network architecture was designed
that captures the low-level textural features of the lung tissue.
The network consists of 5 convolutional layers with 2 2 ker-
nels and LeakyReLU activations, followed by just one average
pooling, with size equal to the size of final feature maps and
three dense layers. The training was performed by minimizing
the categorical cross entropy with the Adam optimizer. The pro-
posed approach gave promising results, outperforming the state
of the art on a very challenging dataset of 120 CT scans from dif-
ferent hospitals and scanners. The method can be easily trained
on additional textural lung patterns while performance could
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be further improved by a more extensive investigation of the
involved parameters. The large number of parameters and the
relatively slow training (typically a few hours) could be con-
sidered as a drawback of this kind of DL approaches, together
with the slight fluctuation of the results, for the same input, due
to the random initialization of the weights. In future studies, we
plan to extend the method to consider three dimensional data
fromMDCT volume scans and finally to integrate it into a CAD
system for differential diagnosis of ILDs.
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