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Introduction

Visualize objects inside the human body

Advances in CS methods to diagnosis, treatment 
planning and medical research

To diagnosis the integration of data obtained from 
different sources is desired. 



Introduction

Vital Problem in medical Imaging

Many potentials Applications in clinical diagnosis:
Cardiac
Retinal
Abdomen

Process of aligning two images

Algorithms compute the transformation matrix
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The target and the source images are different because:
Different Times
Different source like MRI, CT, PET, SPECT (multi modal)
Different angles in order to have a 2D or 3D perspective 

(multi temporal)

Classified according the Spatial Transformation:
“rigid” (rotation and translation)
“non-rigid” (stretching)
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Dimensionality Transformations
2D-to-2D
3D-to-3D
2D-to-3D
Time (heart cycle and breathing)
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Image Registration Algorithms
Landmark-Based Registration
Surface-Based Registration
Voxel Similarity Measures
2D-3D algorithms
Non-rigid algorithms

Optimization



Registration Framework Components (ITK)

Cost Function
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Transform

Resample Image
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Fixed
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Image Similarity
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Image
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SPIE 2006: Medical Image Analysis with ITK and Related 
Open Source Software. Feb, 11, 2006 http://pt.slideshare.net/kitware/itk-tutorial-presentation-slides947
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InterpolationInterpolation

Lower cost 
Nearest Neighbor, Linear, Bi-Linear and Cubic

High cost
BSpline, Sync
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Multi ResolutionMulti Resolution
Fast to big changes (small 

images)
Accurate in high resolution 

(complete image)

http://prism.asu.edu/publications/papers/paper04_iruhbs.pdf
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NotationNotation
Refer A(x

A
)as the intensity value in position x

A

Same to image B

Images are Mappings of points in the patient within their 
field of view (or domain Ω) to intensity values
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NotationNotation
Images A and B represent one object  X

Imaged with same or different modalities

There is a relation between spatial locations in A and B 

Registrations involves recovering the spatial 
transformation T  which maps x

A
  to x

B
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Type of TransformationType of Transformation
Spatial mapping T describes relationship between 

images locations
Same object in a different position (2D-3D)

Projection is characterized by system (u
0
,v

0
,k

u
,k

v 
)

 u
0
,v

0 
define the projection of points (u,v) in imaging 

plane
This transformation T

projection
 is 4 x 3 matrix which 

projects the 3D object along the z axis
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Type of TransformationType of Transformation

Same object in a different position (3D-3D)
Rigid-body transformation (rotation and translation)
Six degrees of freedom 

t = (t
x
,t

y
,t

z
)

Rotations about three axes
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Type of TransformationType of Transformation

Affine or Linear Transformation
Rigid-body transformation (rotation and translation)
Scaling and Shearing
Twelve degrees of freedom 
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Type of TransformationType of Transformation
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Type of TransformationType of Transformation

Nonrigid Registration
 Registration Using Basis Functions (Fourier and 

Wavelets)
Thin-Plate Splines
B-Splines
Elastic Registration
Fluid, Optical Flow e etc
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Type of TransformationType of Transformation

Nonrigid Registration
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SPIE 2006: Medical Image Analysis with ITK and Related 
Open Source Software. Feb, 11, 2006 http://pt.slideshare.net/kitware/itk-tutorial-presentation-slides947

I will not register images in pixel space

I will not register images in pixel space

I will not register images in pixel space

I will not register images in pixel space

I will not register images in pixel space

I will not register images in pixel space
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Image Spacing and OriginImage Spacing and Origin
Medical image volume are typically anisotropic

In-plane pixel size smaller than inter-slice spacing

A transform is rigid only with respect to physical 
coordinates and not pixel coordinates
PhysCoord = PixelCoord * ImageSpacing  + ImageOrigin

The registration is always with respect to physical 
coordinates

Spacing and origin information could be set correctly in 
the images!
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Registration AlgorithmsRegistration Algorithms

Points and the Procrustes Problem
Surface Matching

The Head and Hat 
Distance Transforms
Iterative Closest Point (ICP)

Voxel Similarity Measure

“Handbook of Medical Imaging – Vol. 2. Medical Image Processing and Analysis”,
 Editors Sonka, M.; Fitzpatrick, J.M. - Pag. 479
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Voxel Similarity MeasureVoxel Similarity Measure

Intramodality Registration
Minimizing Intensity Difference

Correlation Techniques
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Voxel Similarity MeasureVoxel Similarity Measure

Intramodality Registration
Normalized Correlation (ITK)

Optimal Value -1
Metric range: 1 to -1
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Voxel Similarity MeasureVoxel Similarity Measure

Entropy

Joint Entropy
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Voxel Similarity MeasureVoxel Similarity Measure

Intermodality Registration
Information theoretic Techniques
Mutual Information Metric:

Qualitatively measure how much information is gained 
about one image (intensity) by the knowledge of 
another image (intensity).

Two different groups introduced the idea in the context of 
multi-modality registration. Viola and Well(1997) and 
Collignon et al. (1995).
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Voxel Similarity MeasureVoxel Similarity Measure
Intermodality Registration

Information theoretic Techniques
Mutual Information Metric:

If dependency between two images does not have to be 
specified MI is a good choice.

MI is defined by entropy (measure of information)
Adjust the bins (32, 64 and etc)
Parzen Windowing, Kernel density estimate and 

Histogram binning.
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Parzen WindowingParzen Windowing

Density function is constructed by superimposing kernel functions centered on 
the intensity samples obtained from the image

Kernel type

Gaussian, boxcar, B-Spline

Kernel Width (crucial)

Depend on dynamic range of data

Normalize Data

Number of Samples
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Voxel Similarity MeasureVoxel Similarity Measure

Intermodality Registration
Mutual Information 



Concepts and Algorithms

Voxel Similarity MeasureVoxel Similarity Measure

Intermodality Registration
Normalized Mutual Information 
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Mutual Information MetricMutual Information Metric

Translations

ViolaWells Mattes
Optimal Value at 

maximum

Metric range:
Image 

dependent
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Joint Histograms: Mono-ModalityJoint Histograms: Mono-Modality
Images Aligned Translated by 0 to 20 pixels

White = zero value
Black  = highest value

Misalignment causes
dispersion



Concepts and Algorithms

Joint Histograms: Multi-ModalityJoint Histograms: Multi-Modality
Translated by 0 to 20 pixels

Misalignment causes
dispersion

Images Aligned

White = zero value
Black  = highest value
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OptimizationOptimization

Gradient Descent

Powell’s Direction Set Method

Downhill Simplex method
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OptimizationOptimization

Gradient Descent
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OptimizationOptimization

Gradient Descent (Local Optimization)
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OptimizationOptimization

Gradient Descent (Global Optimization)
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3D CT to MR-T1 Rigid Registration3D CT to MR-T1 Rigid Registration

Fixed Image:  MR-T1, 256 x 256 x 52 pixels, 0.78 x 0.78 x 3.00 mm
Moving Image: CT, 512 x 512 x 44, 0.41 x 0.41 x 3.00 mm

Registration: 4 levels, MI, gradient descent, quaternion rigid

Images provided as part of the project: “Retrospective Image Registration Evaluation”, 
NIH, Project No. 8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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3D PET to MR-T2 Rigid Registration3D PET to MR-T2 Rigid Registration

   Fixed Image:  MR-T2, 256 x 256 x 26 pixels, 1.25 x 1.25 x 4.00 mm
Moving Image:  PET, 128 x 128 x 15, 1.94 x 1.94 x 8.00 mm
 Registration: 3 levels, MI, gradient descent, quaternion rigid

Images provided as part of the project: “Retrospective Image Registration Evaluation”, 
NIH, Project No. 8R01EB002124-03, Principal Investigator, J. Michael Fitzpatrick, Vanderbilt University, Nashville, TN.
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