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RESUMO

O câncer de mama é caracterizado pelo crescimento descontrolado do tecido mamário,
sendo uma das maiores causas de morte no mundo. O diagnóstico correto e precoce da doença
possibilita o tratamento adequado para os pacientes, reduzindo suas chances de morte. É
fundamental para a definição do tratamento, a análise da proteína Human Epidermal growth factor
Receptor-type 2 (HER-2). As lâminas testadas para a proteína de HER-2 contêm duas amostras
de tecido, uma de teste e uma de controle. A amostra de controle é sempre positiva para o teste
imuno-histoquímico (IHQ) e não pertence ao mesmo paciente que a amostra de teste, o controle
tem papel de calibrar e assegurar a qualidade da análise. Esse trabalho propõe a utilização
da rede neural YOLO para localização e classificação da amostra de teste a ser analisado no
exame IHQ para diagnosticar a presença do HER-2. Para o treinamento da rede foi usado a base
pública de images HistoBC-HER2, que contém imagens histopatologicas coradas tanto com HE
quanto com IHQ. Como essa base não possui anotações de ground truth para detecção de tecidos,
foi necessário uma etapa adicional para criação dessas anotações. O resultado desse trabalho
adicionou informações de ground truth quanto a detecção de amostras de tecidos da base pública
HistoBC-HER2, que poderá ser usado para essa tarefa de detecção. Os experimentos mostraram
que cada amostra de tecido possuem diversas características que não são facilmente generalizadas,
obtendo um IoU médio de 0,2094 com desvio padrão de 0,2522 ao testar nas imagens IHQ a
rede treinada com images HE. Por fim, os resultados obtidos pela YOLO demonstraram que as
características aprendidas a partir do treinamento com imagens de HE não são suficientes para
detectar as amostras nas imagens de IHQ.

Palavras-chave: Redes Neurais. Detecção de ROIs. Imagens Imuno Histopatológicas.



ABSTRACT

Breast cancer is characterized by an abnormal grown of breast tissue cells, it is considered
one of the leading cause of deaths worldwide. The correct and early diagnosis of the disease
enables the proper treatment for the patients, reducing the death rates. Analysis of the human
epidermal growth factor receptor-2 (HER-2) is fundamental for the determination of the proper
treatment. On the IHC microscopic slides where the HER-2 test is performed, there are two
tissues samples: test and control tissue samples. The control samples are always HER-2 positive
and help to ensure the proper assay performance. Our work propose to use the YOLO neural
network to localize and detect the tissue samples to be analyzed on IHC exam. The public dataset
HistoBC-HER2 containing both HE and IHC images was used for the network training. Since this
dataset did not have ground truth annotations for tissue detection, it was necessary an additional
step for manually creating these annotations. The resulting work incremented HistoBC-HER-2
dataset with ground truth annotations for tissue samples detection. Our experiments have shown
that each tissue sample has distinctive features that can not be easily generalized. Therefore, we
achieved an IoU score of 0.2024 with a standard deviation of 0.2522 when testing on IHC images
using the network trained with HE images. Finally, the results from YOLO have demonstrated
that the features learned from training the network with HE images were not sufficient to detect
samples on IHC images.

Keywords: Neural Networks. ROI Detection. Immuno Histochemical Images
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1 INTRODUCTION

Cancer is a generic term for a large group of diseases characterized by the growth of
abnormal cells beyond their usual boundaries that can then invade adjoining parts of the body
and/or spread to other organs [33]. According to Bray et al. [7], cancer is expected to rank as
the leading cause of death and the single most important barrier to increasing life expectancy in
every country of the world in the 21st century.

In 2018, breast cancer represented 6.6% of all 9.6 million of deaths related to cancer
and 11.6% of 18.1 million of new cancer incidences in both sexes. These number are even more
significant analyzing only cancer among women, where breast cancer corresponds to 15.0% and
24.2% of deaths and new incidences respectively [7]. Furthermore, breast cancer was the most
common type of cancer among woman in most of the countries, including in Brazil, as seen in
Figure 1.1.

Figure 1.1: Global map presenting the most common type of cancer incidence in 2018 in each country among
women. The cancer type and the number of countries represented in each ranking group are included in the legend.
Figure reproduced from Bray et al. [7].

A correct and early diagnosis of the disease enables the proper treatment for the patients,
increasing breast cancer cure rates [33]. For as much as not all chemotherapeutics have the same
effect on all breast cancer patients, immunohistochemistry (IHC) has an important role to define
which breast cancer subtype is affecting the patient to address the treatment correctly Zaha [51].

One of the protein overexpressions identified on IHC analysis is the human epidermal
growth factor receptor-2 (HER-2). The HER-2 positive breast cancer represents a special subtype
that has clear epidemiological, clinical, molecular and prognostic differences. A positive HER-2
breast cancer is considered separate entity with recognized worse prognosis and poor response to
conventional chemotherapy agents alone Gonzalo Jr Recondo et al. [15].
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On the IHC microscopic slides where the HER-2 test is performed, there are two tissues
samples: test and control tissue samples. The control samples are always HER-2 positive and do
not belong to the patient, who is having his tissue sample tested. These controls help to ensure
proper assay performance and to calibrate the appropriate assay sensitivity and dynamic range
for each staining run. Furthermore, they also ensure that the reagents are performing properly
Hicks and Schiffhauer [20]. To identify correctly which sample contains the test sample, it is
common in the pathology routine a presence of a hematoxylin and eosin (HE) stained slide along
with its correspondent IHC slide. The HE slide consists of subsequent cuts from the same tissue
that is going to be examined in the IHC slide, i.e. the HE slide has tissues samples with similar
shape as the IHC, as represented in Figure 1.2.

(a) IHC slide (b) HE slide

Figure 1.2: An example from HistoBC-HER2 dataset Cordeiro [8]

Due to the availability of microscopic slide scanners and computer aided diagnosis
(CAD) systems, computerized image analysis in histopathology of breast tumors holds promise
to improve breast cancer diagnosis Robertson et al. [41]. The large volume of data acquired with
this scanners makes the manual evaluation inefficient or even impossible, hence microscopic
image analysis has gained attention since these method can improve efficiency and objectiveness
Lu et al. [31].

However, a typical histopathology slide contains a tissue area of approximately 15 × 15
mm, which at the resolutions that the slides are scanned, one slide image can require a storage up
to gigabytes Veta et al. [48], Robertson et al. [41], Webster and Dunstan [50]. Additionally to the
computational problems that can be caused when processing these large images, a considerable
part of those images are empty. Thus, it is common to manually identify regions of the slides to
perform further analysis.

The selection of region of interest (ROI) on the input images manually performed by a
pathologist reduces the computational time and avoid unnecessary processing. Nevertheless, it
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makes the algorithm dependent of user interaction Jian et al. [23]. By reducing this requirement,
we might be closer to a fully-automatic image processing algorithm.

Motivated by these reasons, we propose a method to localize tissue samples on IHC and
classify them as test if the detected sample is similar to the tissue sample on the correspondent HE
slide. The presented work is going to avoid unnecessary processing on empty spaces, reducing
computational time. It also provides a step forward to a fully-automatic image processing
algorithm.

1.1 OBJECTIVES

Our aim in the presented work is to detect test tissue samples on histopathological images. We
employed the state-of-art You Only Look Once (YOLO) neural network in this tissue detection
task. To achieve this general objective, we define the following specific objectives:

• Analyze stained histopathological images. This analysis is necessary to create ground-
truth bounding boxes in the dataset from Cordeiro [8];

• Train YOLO with the dataset from [8];

• Obtain the bounding boxes coordinates found by the neural network;

• If there are more than one bounding box, determine which one is going to be evaluated;

• Evaluate the tissue detection task performed by YOLO.

1.2 DOCUMENT STRUCTURE

The presented document is structured in 6 chapters. This first chapter gives an introduction about
the breast cancer problem in the world health. It also it emphasizes the importance of early and
correct diagnosis followed by a proper treatment. Moreover, it describes our motivation and
defines our general and specific objectives.

Chapter 2 introduces concepts used in the development of this work. It describes the
metrics used, fundamental neural network theory and specific concepts of the YOLO neural
network.

The following chapter contains a brief overview of previous works that approached
similar problems.

Chapter 4 explains the methodology employed in this work. This chapter also details
the dataset used.

The results of our experiments along with their analyzes are found in chapter 5.
Finally, chapter 6 is the conclusion of this work. It has the final acknowledgements of

the problem and future works that might be performed.
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2 THEORETICAL FOUNDATION

This chapter explains the theoretical concepts used in the present work. Within this
chapter we present commonly evaluation metrics used in object detection problems. We also
introduce artificial neural networks, what they are, how they work and the core ideas employed
on those algorithms. Lastly, we present YOLO, a state-of-art object detection neural network,
and improvements made on its second and third version, i.e. YOLOv2 and YOLOv3.

2.1 EVALUATION METRICS

In machine learning problems, a confusion matrix is used to visualize the algorithm corrected
predictions. According to Provost and Kohavi [35], the confusion matrix is a matrix showing the
predicted and actual classifications (Figure 2.1).

Figure 2.1: Illustration of a confusion matrix.

2.1.1 Metrics in Confusion Matrix

Provost and Kohavi also define the following metrics using the values of a confusing matrix.
Within those metrics, we would like to highlight accuracy, recall and precision due to the frequent
use of these metrics in object detection context Everingham et al. [12], Lin et al. [30], Russakovsky
et al. [43].

Accuracy It is the proportion of corrected predicted examples.

accuracy =
TP + T N

TP + FN + FP + T N
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Recall It is the proportion of positive cases that were correctly predicted. It is also known as
true positive rate or sensitivity.

recall =
TP

TP + FN

Specificity It is the proportion of negative cases correctly predicted, also called true negative
rate.

speci f icity =
T N

FN + T N

Precision It is the proportion of actual positive cases that were predicted as positive.

precision =
TP

TP + FP

2.1.2 Other Evaluation Metrics

As declared in [12], evaluation of results on multi-class datasets has several problems. Some of
those problems are listed bellow.

• An image contains instances of multiple classes, making not trivial an evaluation of the
classification task.

• The prior distribution over classes is nonuniform, hence accuracy measure is not
appropriated.

• Evaluation metrics need to be algorithm-independent since that different detection
algorithms do not share an universal evaluation metric;

• Classification and detection are evaluated as separated tasks.

Therefore, Everingham et al. proposed to use the average precision (AP) to evaluate
both classification and detection on Pascal Visual Object Classes (VOC) Challenge 2007. The
decision was taken due to the observation AP summarises the shape of the precision/recall curve.
It is defined as the mean precision for a set of eleven equally spaced recall levels [0, 0.1, ...,
1] (Equation 2.1). The precision at each recall level r is interpolated by taking the maximum
precision measured for a method for which the corresponding recall exceeds r (Equation 2.2).

AP =
1
11

∑
r∈{0,0.1,...,1}

pinterpr (2.1)

pinterpr = max
r̃:r̃≥r

p(r̃) (2.2)

Mean Average Precision Another metric that comes from AP is the mean average precision
(mAP), which is the mean value of average precision for each class.
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Intersection Over Union (IoU) This metric is the ratio of overlap area between the predicted
and ground-truth bounding boxes and their area of union.

Figure 2.2: Computing the Intersection of Union is as simple as dividing the area of overlap between the bounding
boxes by the area of union. Figure reproduced from Rosebrock [42].

2.2 ARTIFICIAL NEURAL NETWORKS

Haykin [17] defines artificial neural network as a machine that is designed to model the way in
which the brain performs a particular task or function of interest, as in the brain, the knowledge
in the neural network is acquired through a learning process, this process consists in a massive
interconnection of the basic cell in the brain, the neurons. Corresponding to this learning process
that happens biologically, artificial neural networks mimic those mechanisms through a net of
neurons cells that perform simple calculations and are interconnected with synaptic weights.

The properties and capabilities of artificial neural networks make them suitable to
be used in an extensive variety of problems. Firstly, it is important to emphasize its parallel
distributed system and, secondly, its ability to learn and to find a reasonable output corresponding
to an input that was not encountered in the training process. The Figure 2.3 represents a dataset
with elements illustrated by points in the three graphs. Each graph has one curve that tries to
model those elements. There is a curve that has a underfitting of the dataset (left), a curve that has
a good fitting (middle) and a curve is overfitting (right). Whilst, the left graph represents a curve
too simple to model data, the right graph represents a curve too complex that memorized all the
training examples, neither left nor right curves represent a model with a good generalization of
the problem.

Some other crucial properties highlighted by Haykin are:

Nonlinearity Neural networks can be either linear or nonlinear. This characteristic is highly
important when comes to model nonlinear problems.
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Figure 2.3: The figure shows three curves that are underfitting, with proper fitting and overfitting the problem dataset.
Figure reproduced from [6]

Input-output mapping As the category of supervised learning, a neural network learns with
examples that have a correspondent output for the given input. This correspondence is achieved
by an input-output mapping.

Adaptability In a nonstationary environment, i.e. when statistics change with time, neural
networks have the capability of adapting its synaptic weights to the changes, thus they may be
easily retrained.

Evidential Response In pattern classification problems, additionally to the information about
the pattern selected, neural networks also give the confidence score in which the selection was
made being a helpful resource to improve the classification.

Contextual Information The knowledge is represented by the structure and activity state of
the network. Therefore, every neuron of the network is potentially affected by the global activities
of other neurons.

2.2.1 Neuron Model

As mention before, the fundamental information-processing unit of a neural network is called
neuron. The neuron is a simple calculation cell that is composed of synaptic weights, that
numerically express the importance of the interconnections represented; an adder, that performs a
linear combination summing the weighted inputs; an activation function, that limits the amplitude
of the output; and optionally a bias, which makes an adjustment in the input of the activation
function depending whether it is positive or negative.

Inspired by Warren McCulloch’s and Walter Pitts’s early work, Frank Rosenblatt
developed between 1950 and 1960 a type of artificial neural network called perceptron Nielsen
[32]. Perceptron is the simplest neural network with only one neuron. The comprehension of
a perceptron behavior is fundamental to understand more complex neural networks that are
more popular nowadays. Moreover, it will be helpful in the explanation of elements of a neural
network.
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Elements and Notation To illustrate the elements of a neuron labeled k, the model in Figure
2.4 is going to be used. The neuron receives a set of inputs and generates an output. This result is
obtained by executing an activation function applied to the weighted sum of the inputs increased
by the neuron bias.

Figure 2.4: Model of a neuron, labeled k. Figure reproduced from [17].

• Inputs: the input signals that the network receives are simply called inputs and usually
are listed as x1, x2 and so goes on until the last signal, xm.

• Output: the output signal from neuron is denoted as yk .

• Weights: synaptic weights are denotes as wk j , where j indicates the input while the k

indicates the neuron that are interconnected by this weight.

• Bias: bk represents the bias of neuron k.

• Activation Function: φ(·) expresses the activation function chosen.

With this notation, the output of a neuron k can be expressed with Equation 2.3.
Alternatively,

∑k=m
j=1 wk j x j can be rewrite as a dot product of vectors wk and xk , whose elements

represent the weights and inputs respectively,
∑k=m

j=1 wk j x j ≡ wk · x, Equation 2.4 is the
corresponding equation for this notation.

yk = φ(

k=m∑
j=1

wk j x j + bk) (2.3)

yk = φ(wk · x + bk) (2.4)
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2.2.2 Architecture of a Neural Network

A neural network is organized in layers, as seen in Figure 2.5, where the inputs are encoded
in neurons and organized in the leftmost layer, the input layer. The outputs are encoded and
organized in the rightmost layer, the output layer. The layers that have neither inputs nor outputs
are called hidden layers. Moreover, the neural network can have one or multiple hidden layers
and the neurons on the second layer can make decisions at a more complex and more abstract
level than the ones on first layer, as well as the neurons on the third layer can make decisions
even more complex and more abstract than the neurons from the second layer [32].

Figure 2.5: An example of a 4-layer neural network with 2 hidden layers. Figure reproduced from [32]

It can be also observed in the Figure 2.5 that the output from one layer is used as input
for the next layer. This kind of neural networks where the information is only fed forward, i.e.
does not have a loop caused by information feed back, is denominated as feed forward neural
network.

2.2.3 Loss Function

It is desired that the algorithm finds weights and bias where the output approximates from y(x)

to the input x. To achieve this goal, it is necessary to evaluate how close the algorithm is from
achieving it. The information that quantifies this distance is obtained using the loss function. A
popular choice of loss function is the mean square error (MSE). The MSE function (Equation
2.5) sums the square difference between the correct output y and the predicted x(Θ).

L(θ) =
1
N

N∑
i=1
(yi − xi(Θ))

2 (2.5)
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2.2.4 Backpropagation Algorithm

One of the main elements that enable neural networks to learn in the training process, i.e. update
its weights and bias according to the error presented by the loss function, is the backpropagation
algorithm. It employs two key concepts: the gradient descent and the chain rule. The loss
function quantifies the error of the neural network and we aim to find weights and bias that
minimizes this error. One method to find the minimum of a function is using the so called
gradient descent.

At the same time, the chain rule is used in the backpropagation algorithm since the
output of a neural network can be seen as a result of many composed functions encapsulated in
each neuron. The output neuron is computed taking into account the connected neurons from the
previous layer with its weights and bias. The neurons of the previous layer are computed in a
similar way with respect to their connections with their previous layer and so goes on. Therefore,
to accurate how the weights influence the output, the chain rule applied backward (Figure 2.6) is
fundamental to minimize the loss of a neural network.

Figure 2.6: The forward pass on the left in calculates z as a function f (x, y) using the input variables x and y. The
right side of the figures shows the backward pass. Receiving dL

dz , the gradient of the loss function with respect to
z from above, the gradients of x and y on the loss function can be calculate by applying the chain rule. Figure
reproduced from Kratzert [25].

2.3 DEEP NEURAL NETWORKS

As defined by LeCun et al. [27], deep learning methods are representation-learning methods
with multiple levels of representation, that are obtained by composing simple but non-linear
modules. Each module transforms the representation at one level (starting with the raw input)
into a representation at a higher, slightly more abstract level. Furthermore, LeCun et al. also
claim that deep learning allows computational models that are composed of multiple processing
layers to learn representations of data with multiple levels of abstraction. Those models receive
the name of Deep Neural Networks. This is now achievable due to the the advent of fast graphics
processing units (GPUs).

Since 2009, deep neural networks have won many official international pattern recog-
nition competitions [44]. One remarkable achievement in this area was in 2012, when a deep
convolutional network architecture AlexNet [26] won ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) and this type of architecture became popular in image processing.
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Recently, deep learning is emerging as a powerful tool and will continue to attract considerable
interests in microscopy image analysis including nucleus detection, cell segmentation, extraction
of regions of interest (ROIs), image classification, etc. [31].

2.3.1 Deep Convolutional Neural Networks

Convolutional neural networks or simply ConvNets are a category of artificial neural networks
that are composed of multiple layers of neurons. These architectures are formed by stacked
convolutional, pooling and fully-connected layers, along with activation functions [27].

The use of many layers, its local connectivity, shared parameters, and pooling can be
listed as core ideas of ConvNets; these properties enable an easier training process at the same
time that maintains a considerable accuracy [27].

Following the deep learning, deep convolutional networks have gained attention in the
last years. This success came from the efficient use of GPUs, new activation functions as Rectifier
Linear Unit (ReLU), a new regularization technique called dropout, and techniques to generate
more training examples by deforming the existing ones [27].

Convolution Layer The convolutional layers combine information of two functions (I and K)
in an operation that combines them to produce a third one, as represented by the image 2.7. In
the network, I is our input image, K is the convolution kernel, i.e. our parameters, which are
going to be learned in the training process and the result I ∗ K is the feature map [9].

Figure 2.7: Illustration of a convolution operation in the image I using the convolution kernel K . Figure reproduced
from [45].

Pooling Layer The pooling operation reduces the dimensionality through downsampling in
width and in height of the given input, and thus reducing the number of parameters to be trained,
the training time and the probability of overfitting. Downsampling can be obtained using the
maximum, mean, median or other reduction operations in the values of the selected window [49].
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Figure 2.8: Representation of a max and a average pooling operation with a 2x2 window and stride 2 in a 4x4 input.
Figure reproduced from [22]

Fully-connected Layer The fully-connected layers are those whose neurons have connections
to the neurons on the previous layer. Similarly to a convolutional layer, a fully-connect layer
performs a matrix multiplication with its layer weights followed by a bias offset in the neural
network context [32].

Activation Function The activation function includes non-linearity to our model, which is
important when modeling generic information. Popular choices are the Sigmoid, Tanh, Rectifier
Linear Unit (ReLU) and SoftMax function [32, 36].

Dropout Layer A popular regularization method to reduce overfitting in Convolutional Neural
Networks is the insertion of Dropout Layers. During the training phase, some neurons with a
random probability are dropped, i.e. they are not going to be considered in the feedforward
neither backpropagation, as illustrated in Figure 2.9.

2.4 OPTIMIZATION ON DEEP NEURAL NETWORKS

Complementing the studies of deep neural networks over the recent years, some works have
been done in improving the accuracy of neural networks, speeding up the training process and
reducing overfitting. Examples of the optimization techniques on deep neural networks are the
batch normalization, introduced by Ioffe and Szegedy [21], and data augmentation techniques
discussed on Perez and Wang [34].

2.4.1 Batch Normalization

Ioffe and Szegedy [21] have shown an improvement in the network training if a batch normalization
is introduced after each convolution. It is possible to list some advantages after this batch
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Figure 2.9: The network on the left is an example of standard neural network with 2 layers and the network on right
is an example with dropout. Figure reproduced from [46].

normalization process, as the possibility of using higher learning and fewer worries about weights
initialization.

The input values x are normalized by the batch mean µ and the batch variance σ.
Optionally the result can be scaled by γ and added to an offset β as shown in Equation 2.6.

γ(x − µ)
σ

+ β (2.6)

2.4.2 Data Augmentation

As the results of a neural network rely heavily upon examples encountered during the training
process, it is desired that those examples cover a wide range of coverage for the problem that the
network aims to solve. This is particularly important when working with medical images, once
that the data usually is not as vast as other categories of images. Thus limiting the size of the
dataset can lead to overfitting [34].

Artificial examples can be generated in a procedure known as data augmentation, which
applies image transformations on the dataset, e.g. flipping and rotation [34].

2.5 YOU ONLY LOOK ONCE NEURAL NETWORK

A popular approach in object detection is the region proposal-based technique, which creates
candidates windows that are in sequel classified using a convolutional neural network features
[14]. Another approach to object detection problem is a system based on mixtures of multiscale
deformable part models which makes use of a sliding window technique [13].

Different from sliding window and region proposal-based techniques, You Only Look
Once Neural Network, also called YOLO, is a state-of-art neural network for object detection. It
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sees the entire image during training and test time so it implicitly encodes contextual information
about classes as well as their appearances [40] (Figure 2.10).

Figure 2.10: Illustration of the final prediction using YOLO. Figure reproduced from [38].

As stated by Redmon et al., YOLO is fast, it reasons globally about the image when
making predictions and learns generalized representations of objects. The elements introduced
originally in [40], further improved in [37] and also [39] are described in the following subchapters.

2.5.1 Unified Detection

Redmon et al. [40] have unified the elements from an object detection system, i.e. object
localization and object classification, into one neural network. These neural networks use features
from the entire image to predict multiple bounding boxes and their probabilities.

YOLO divides the input image into a S × S grid. Each grid cell is responsible for the
object that it is localized in the center of the cell. Additionally, each grid cell predicts B (limit
number to be defined in the problem statement) bounding boxes and their confidence scores. The
confidence score is a quantification of how confident the model is about the prediction. Its values
is calculated as Pr(Object)? IOUpred

truth. If there are no objects in that cell, the confidence is zero,
otherwise, the confidence is the intersection over the union of the ground-truth and predicted
bounding boxes [40].

Each bounding box is defined by 5 predictions: x, y,w, h and the confidence score
defined above. The pair of coordinates (x, y) represents the center, while w is the width and h
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is the height of the bounding box respectively. Those predictions can be either relative to the
bounds of the grid cell (x and y) or relative to the whole image dimensions (w and h) [40].

The grid cell also predicts C conditional class probabilities Pr(classi |object) (Equation
2.7). It is important that these probabilities are conditioned on the grid cell containing an object
and only one set of classes probabilities is predicted per grid cell. Finally, Figure 2.11 summarizes
YOLO object detection system [40].

Pr(classi |object) ∗ Pr(object) ∗ IoUtruth
pred = Pr(classi) ∗ IoUtruth

pred (2.7)

Figure 2.11: YOLO divides the image into an S× S grid and for each grid cell predicts B bounding boxes, confidence
for those boxes, and C class probabilities. Figure reproduced from [40].

2.5.2 Network Design

The network architecture presented by Redmon et al. was inspired by the GoogLeNet model for
image classification [40]. However, the inception modules were replaced by 1 × 1 reduction
layers, i.e. 1 × 1 convolutional layers that have effect on reducing feature dimensions, followed
by 3 × 3 convolutional layers.

The YOLO detection network has 24 convolutional layers followed by 2 fully connected
layers. Alternating 1 × 1 convolutional layers reduce the features space from preceding layers.
YOLO has the convolutional layers pre-trained on the ImageNet classification task at half the
resolution (224 × 224 input image) and then double the resolution for detection full network as
described by Redmon et al. [40] ( Figure 2.12).
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Figure 2.12: The full network. Illustration reproduced from [40].

2.5.3 Modifications in v2

In YOLOv2 [37] features were fine-tuned to improve the network performance. We can highlight
the following improvements in YOLOv2 [37]:

Batch Normalization The addition of batch normalization in all convolutional layers in YOLO
leads to significant improvements in convergence. It also eliminated the dependency for other
forms of regularization.

High-Resolution Classifier The original YOLO trained the classification network with 224 ×
224 has increased to 448 × 448 for detection. For YOLOv2, firstly a fine-tune was made on the
classification network at the full 448 × 448 resolution for 10 epochs on ImageNet, a state-of-art
neural network for image classification [26]. This improvement gives the network time to
adjust its filters to work better on higher resolution input. Then YOLOv2 resulting network was
fine-tuned on detection.

Convolutional with Anchor Boxes YOLO originally predicted the coordinates of bounding
boxes directly using fully-connected layers on top of the convolutional feature extractor. The
fully-connected layers from YOLO were removed and anchor boxes, also called priors, were
introduced to predict bounding boxes.

Dimension Clusters Dimension clusters address one of the problems that were encountered in
bounding boxes predicted by anchors. Although the network can learn to properly adjust the
dimensions of boxes manually picked, starting with better chosen anchors for the network would
make easier for the network to learn to predict good detections. Redmon and Farhadi have run
k-means clustering on the training set to automatically find better good priors. Instead of using
standard k-means with Euclidean distance, d(box, centroid) = 1− IoU(box, centroid) was used
as the distance metric to achieve better IoU scores.
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Direct Location Prediction Another problem with the anchor box approach was the model
stability, which was addressed using direct location prediction. The network became more stable
due to an easier to learn parametrization. This was possible through constraining between 0
and 1 the predicted location coordinates, using logistic activation and relative coordinates to the
location of the grid cell.

Multi-Scale Training For a more robust network, every 10 batches the network chooses a new
image dimension instead of using a fixed input image size.

Fine-Grained Features In the second version of YOLO, the network predicts on 13 × 13
feature map. It changes although this change can be sufficient for large objects, fine-grained
features might benefit localization of smaller objects.

2.5.4 Modification in v3

Redmon and Farhadi presented a new version of the YOLO neural network. The improvements
made in the YOLOv3 are listed below.

Bounding Box Prediction The third version of YOLO uses logistic regression to predict an
objectness score for each bounding box. Moreover, YOLOv3 assign 1 for the objectness score if
the bounding box anchor overlaps a ground truth object by more than any other bounding box
anchor. Otherwise, if the bounding box anchor is not the best but does overlap a ground truth
object by more than some threshold, the prediction is ignored. The YOLO system only attributes
one bounding box anchor for each ground truth object.

Class Prediction Multilabel classification is used to predict classes that the bounding box
might contain. YOLOv3 uses independent logistic classifiers instead of softmax and binary-cross
entropy loss for class training.

Predictions Across Scales Using a similar concept to feature pyramids networks, YOLOv3
predicts boxes at 3 different scales.

Feature Extractor A new network is used to perform feature extraction. The network is a
hybrid approach between YOLOv2, Darknet-19 and residual networks. It uses successive 3 × 3
and 1 × 1 convolutional layers and shortcut connections as illustrated in Figure 2.13. In total, it
has 53 convolutional layers, therefore it received the name Darknet-53.

We choose to use YOLOv3 due to their additional features. The predictions across
scales improvement could help to detect tissue samples, considering the variety of sizes and
shapes that those objects present. We also decided to use this network, due to the successes of
residual networks in previous works on image processing [18].
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Figure 2.13: Hybrid network approach between YOLOv2, Darknet-19 and residual networks. Figure reproduced
from [39].
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3 RELATEDWORK

In this chapter, we are going to review the literature that already approached the problem
presented in the current work. Firstly, we introduce works to detect Region of Interest (ROI) in
medical images in general (Table 3.1). In the sequence, we introduce related work in microscopic
histopathological images (Table 3.2).

3.1 DETECTION AND LOCALIZATION OF REGION OF INTEREST ON MEDICAL
IMAGES

There are a variety of previous works that approached detection and localization of ROIs problems
in medical images. Some examples described below are used in dermatological images Goyal and
Yap [16], eye fundus Araújo et al. [5], mammography, ultrasound, X-ray, computed tomography
or magnetic resonance imaging Kisilev et al. [24], Eswaraiah and Reddy [11], Li et al. [29], Li
[28].

Goyal and Yap proposed to use an InceptionV2 as a base network for feature extractor and
classification of anchor boxes with Fast Region-based Convolutional Neural Network (R-CNN)
and Single Shot Multibox Detector (SSD) meta-architectures for the ROI lesion detection problem.
They used 3 publicly available datasets for skin lesion: International Symposium on Biomedical
Imaging 2017 (ISBI-2017) Challenge, PH2, and Human Against Machine with 10000 training
images (HAM10000). The method achieved 94.5% of precision and 94.3% of recall for IoU
> 0.5 in ISBI-2017, 100% of precision and recall for PH2 and, lastly, 83.3% of precision and
82.4% of recall for HAM1000.

In the field of eye fundus imaging, Araújo et al. proposed a neural network for the task
of simultaneous optic disc (OD) detection, fovea detection, and OD segmentation from retinal
images. The network denominated UOLO was designed for the detection and segmentation of
structures in biomedical images. This network was inspired in the well-established YOLOv2 for
the detection task and U-Net for segmentation. For training and testing the network, 3 public
eye fundus datasets were used: Messidor; Indian Diabetic Retinopathy Image Dataset (IDRID);
and Digital Retinal Images for Vessel Extraction (DRIVE). Araújo et al. achieved equal or better
performance in comparison to the state-of-the-art on both detection and segmentation tasks in a
single-step prediction, reaching IoU 0.88±0.09 on Messidor dataset.

Kisilev et al. proposed a multi-task convolutional neural network (CNN) approach for
detection and semantic description of lesions in diagnostic images. Therefore network is trained
to perform 2 tasks: to detect ROI candidates and to generate semantic descriptions of the lesions
inside the ROIs. In the first task, Region Proposal Network (RPN) module is employed to generate
ROI candidates. The module is also trained to predict ROI bounding box coordinates and its
scores. While in the second task, the candidates ROIs are used as input for a Multi-Attribute
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Descriptor Network (MA-DN) in a multi-class-multi-label prediction problem. Kisilev et al. used
the public Digital Database for Screening Mammography (DDSM) and proprietary ultrasound
images. The approach used ROI detection as part of their pipeline, thus only evaluating the
overall method.

X-ray images usually have multiple sites of abnormalities with monotonous and
homogeneous image features, making the localization and detection of these abnormalities a
non-trivial task. In addition to this problem, there a lack of large-scale datasets with localization
annotation for building an accurate prediction model. Thence, Li et al. presented a unified
approach that simultaneously improves disease identification and localization with only a small
amount of X-ray images containing disease location information. The method firstly employs a
convolutional neural network to learn information from the entire image and implicitly encodes
both the class and location information for the disease. After that, the image is sliced into a patch
grid to capture local information of the disease. Depending on the disease label, the learning task
can be either a fully supervised problem or a multiple instance learning problem (MIL). Using
NIH Chest X-ray dataset with 14 disease labels for the training, the method proposed by Li et al.
outperformed ImageNet pre-trained ResNet-50, which was used as the reference model.

Yet the described methods have approached only rectangular bounding boxes, while
lesions characterized by computed tomography (CT) scans are often elliptical. Li proposed a
method to detect bounding ellipses to avoid geometry information loss about the lesion regions
that might be annotated besides rectangular bounding boxes. The approach uses a Gaussian
Proposal Network (GPNs) that learn bounding ellipses as 2D Gaussian distributions on the image
plane. The Kullback-Leibler (KL) divergence loss calculated between the proposed and the
ground truth Gaussian was used in this extension of Region Proposal Network (RPN). Li used
the DeepLesion dataset from NIH, which contains CT slice images. While RPN achieved 31%
of sensitivity at the IoU threshold of 0.5, the proposed GPN achieved 36% at the same IoU
threshold.

3.2 DETECTION AND LOCALIZATION OF REGION OF INTEREST ON MICROSCOPIC
IMAGES

In the field of microscopic imaging, several methods have been proposed for the detection and
localization of ROIs as well. There are approaches for detecting fluorescent HeLa cells as
Akram et al. [1], cancer cells detection in phase-contrast images as Zhang et al. [52], detection
of ROIs using graphic user interface (GUI) tool for compression as Dong et al. [10] and also
histopathological tissue detection as Alomari et al. [3, 4].

To overcome problems in fluorescent microscopic images, as the low contrast, variable
fluorescence, weak boundaries, conjoined and overlapping cells, Akram et al. proposed a CNN
that perform cell detection, segmentation and tracking. In this method, Akram et al. have proposed
a cell proposal network (CPN) based on fully convolutional neural network architectures. The
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CPN consists on feat part for an extraction of 256-dimensional feature vector, followed by two
parallel fully connected layers, score and bbox. While bbox part predict the bounding box
coordinates, the score predict the score for this bounding box. The method achieved an average
precision of 96.3% on the Fluo-N2DL-HeLa dataset from the International Symposium of
Biomedical Imaging (ISBI) cell tracking challenge.

In phase-contrast microscopy images, Zhang et al. have proposed a deep detector for
cancer cells using Faster Region-Convolutional Neural Network (R-CNN). The Faster R-CNN is
applied for cell detection, later a Circle Scanning Algorithm (CSA) is used for further re-detection
of adhesion cancer cells. A private dataset was used for the experiments, resulting in a better
performance using the Faster R-CNN combined with CSA than only using the Faster R-CNN on
both adhesion cell area and all cell area.

For malaria-infected cell detection in whole slide images, Dong et al. presented a
graphical user interface (GUI) tool which allows the user to control the ROI extraction and
evaluate compression algorithms on ROIs generated. Using the GUI tool proposed, a ROI can be
extracted using a block matching algorithm from a template given by the user.

As for histopathological images, Alomari et al. have proposed a hybrid tissue segmenta-
tion method that combines a reduced feature vector using PCA and a neural network with hidden
layers. The method achieved an accuracy of 96.9%, 94% and 96.5% in the training, validation,
and test set respectively. Similarly, Hiary et al. [19] have proposed a method to localize and
segment tissues using unsupervised learning techniques as clustering. It achieved accuracy of
96.6%, 95.3% and 96.0% in training, validation and test set. The main advantage of this method
compared to the method presented in Alomari et al. [3] is that the clustering-based technique
does not need training. Although achieving good results depends on the seeds initialization, i.e.
the initial labels given to each cluster.
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4 MATERIALS AND METHODS

In this chapter, we describe the dataset used in our work, as well as the data augmentation
that was used. Further, we also discuss the implementation of the network, its configurations and
the hardware on which the experiments were performed.

4.1 DATASET

The presented work used the public HistoBC-HER2 dataset, created by Cordeiro [8]. The
HistoBC-HER2 dataset has 140 WSI images from breast cancer tissues. Each WSI contains an
IHC and its correspondent HE slide as represented in Figure 4.1.

(a) IHC slide (b) HE slide

Figure 4.1: An example from HistoBC-HER2 dataset [8]

This dataset was scanned in a Zeiss Axio Scan Z1 with the objective lens of x40,
therefore the images are saved in the proprietary .czi file format by default. Cordeiro also has
provided the images in .jpeg format, which was used as the network input. This image format
was used due to the network framework used did not support .czi files.

4.2 GROUND TRUTH ANNOTATION

Since the HistoBC-HER2 dataset did not provide ground truth for bounding boxes, it was
necessary to manually mark them using labelImage [47]. LabelImage is a graphical image
annotation tool and label object bounding boxes in images, which saves the annotations in a .txt
file of either PascalVOC or YOLO format.
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The annotations of the bounding boxes ground truth for the HistoBC-HER2 dataset were
further analyzed by Cordeiro.

4.3 HARDWARE

The experiments were performed at Vision, Robotic and Image (VRI) Laboratory from the
University Federal of Paraná. To perform the experiments it was used a GPU from Nvidia
GeForce RTX 2080 Ti series from one of VRI servers. The server has 16 processors from Intel(R)
Core(TM) i9-9900K CPU @3.60GHz series and total RAM memory of 62GB.

4.4 IMPLEMENTATION

There are YOLO implementations available on code hosting platforms, e.g. GitHub 1. It was to
chosen to use the version from AlexeyAB [2] considering its well documented repository.

4.4.1 Data Augmentation

To improve the network performance and avoid overfitting, the implementation [2] allows changing
the data augmentation ratio in the network configuration file. The possible hyper-parameters, i.e.
parameters that are set before the training process, are listed below.

• If saturation=1.5 then it will be changes saturation= init_value ∗ rand(1/1.5, 1.5).

• If exposure=1.5 then it will be changes exposure= init_value ∗ rand(1/1.5, 1.5).

• If hue=0.1 then it will be changes hue= init_value + rand(-0.1, 0.1).

• If angle=30 the the image will be randomly rotated by +30 or -30 degrees.

Since the data is randomly augmented, we do not have an image of how many images
were artificially generated using those hyper-parameters.

The set of data augmentation hyper-parameters used can be found in the network
configuration file 2.

4.4.2 Training

For the training process, we split the dataset using the ratio of 80% for training and 20% for test.
We assured that the same patient was not on both training and test folders.

The YOLOv3 was at first trained using both HE and IHC images from the training
set to learn the general features of both stained tissues. AlexeyAB recommends to train for

1https://github.com/
2https://github.com/julbyip/yolov3-tissuedetection

https://github.com/
https://github.com/julbyip/yolov3-tissuedetection
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2000 × classes, as we aim to identify test and control classes, we changed the hyper-parameter
max_batches for 5000 to have a margin of 1000 extra batches.

Then, for each pair of HE and IHC images, we retrained the YOLOv3 with the weights
that achieved the best average IoU in the previous step. In this second training, we used only the
HE image from one patient in each training process. For the second training, we set additional 200
batches over the batch number that achieved the best IoU (max_batches = best_batch + 200).

In the end, we had 1 trainedYOLOv3 network for the general features of histopathological
images and 1 trained YOLOv3 network for each patient on the test set.

We set width=960, high=960, subdivisions=64 hyper-parameters to improve perfor-
mance as recommended by AlexeyAB. For other hyper-parameters as momentum, decay,
learning_rate and others we used the default values 3.

The original YOLov3 .cfg configuration file uses width=416 and height=416 for input
dimensions. Besides, the configuration file set batch=64, and subdivisions=16, i.e. a batch of 24
images is used for every training step and each batch is further divided by 15 to decrease GPU
requirements. The original .jpeg images have width=4001 and height=5000, hence automatic
resizing of the image would lead to significant information loss. Empirically, we came to the
hyper-parameters width=960, height=960, batches=64, and subdivisions=64 to avoid information
loss caused by the resizing meanwhile respecting memory limitations. We aimed to choose
values multiples of 32 as recommended by AlexeyAB.

3https://github.com/julbyip/yolov3-tissuedetection

https://github.com/julbyip/yolov3-tissuedetection
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5 RESULTS AND DISCUSSION

This chapter presents and discusses the experimental results that were obtained using
the material and methods described previously.

5.1 EXPERIMENTAL RESULTS

For the final evaluation, we tested the YOLOv3 model with weights from different epochs for
each patient on the test set and compared the resulting IoUs.

We used the weights from the epoch which achieved the best average IoU over all the
HE images from the test set. The best epoch in our evaluation using HE images was 3760 as
represented in Figure 5.1.

Figure 5.1: Graph with average IoU scores per epoch on HE images.

Then, we tested the IHC images on with the weights from this epoch. In some images,
the network recognized more than 1 bounding box as represented in Figure 5.2. When this
happened, we chose the bounding box with the highest confidence score.

Figure 5.3 represents the IoU scores per patient when testing YOLOv3 for the IHC
images using the weights found on YOLOv3 training with HE images. At last, we achieved
0.2094 IoU score employing the method described in this work, with a standard deviation of
0.2522.

In our experiments, we had also tried to use the weights from the best epoch for each
patient. However, in this approach the network only recognized tissue samples on 2 of 29 patients
from the test set, resulting into an IoU score of 0.02855 and a standard deviation of 0.1078.
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Figure 5.2: Example of a IHC image with multiple bounding boxes detected.

Figure 5.3: Graph with IoU scores for all the patients using the weights from the best epoch.

Additionally, we tested on IHC images using the mode best epoch, which was 3780. On this
approach, we achieved an IoU score of 0.1963 with a standard deviation of 0.2702.

5.2 DISCUSSION

Tissue sample detection had shown a not trivial task since these samples have a wide range
of shapes. It was not easy to infer a general pattern for the test sample on IHC slides since it
depends on the analysis of a secondary slide. Although the HE slide has tissue samples with a



38

similar shape, its different staining can produce an image with different color and texture features.
Therefore, our experiments have shown that although shape features can be used to detect test
samples on IHC slides, color and texture feature have a decisive role in the detection task.

Figure 5.4 compares the average IoU score per patient overall epochs saved. We can see
in this Figure that tissue samples from patients 631, 649, 661, 662, 679 and 887 were not able to
be recognized in any epoch, therefore averaging 0.0 on IoU score. While patient 630, 638 and
899 achieved more than 0.35 on overall IoU score.

Figure 5.4: Graph from average IoU score per patient over all epochs

Analyzing the slides images from those patients that were successfully recognized by
the trained YOLOv3 (Figure 5.5 and Figure 5.6), it is possible to infer some similarities. On those
examples, both HE and IHQ slides are properly stained and we can see clearly the tissue borders.

(a) Patient 630 (b) Patient 638 (c) Patient 899

Figure 5.5: Examples of HE images from patients were able to be recognized by the trained YOLOv3.

Figure 5.7 and Figure 5.8 are HE and IHC images examples from patients whose tissues
samples were not able to be recognized by the trained YOLOv3. The tissue samples on these
images have either sparse shape and with irregular contours (Figure 5.7(b) and Figure 5.8(b));
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(a) Patient 630 (b) Patient 638 (c) Patient 899

Figure 5.6: Examples of IHC images from patients were able to be recognized by the trained YOLOv3.

either its test was very similar to its control sample (Figure 5.7(a) and Figure 5.8(a)); or the HE
and IHC images have differences on their shape(Figure 5.7(c) and Figure 5.8(c)).

(a) Patient 631 (b) Patient 699 (c) Patient 887

Figure 5.7: Examples of HE images from patients were not able to be recognized by the trained YOLOv3.

(a) Patient 631 (b) Patient 699 (c) Patient 887

Figure 5.8: Examples of IHC images from patients were not able to be recognized by the trained YOLOv3.

The same behavior observed on IHC images can be also detected in HE images. Figure
5.9 shows a similar pattern when evaluating the retraining on HE images, the patients that had a
low IoU score on IHC usually also have had low IoU score on HE. We can emphasize patient
662 who obtained 0.0 IoU score on both retraining and test.

Moreover, finding the appropriate epoch to stop training before overfitting meanwhile
detecting tissue samples is not a simple task. In the experiments, we tried to use the weights from
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Figure 5.9: Graph from average IoU score per patient over all epochs when evaluating on HE images.

the epoch that achieved the highest IoU score for each patient on HE images. On this approach
the network was not able to detect tissue samples on IHC images, implying on overfitting. The
retrained YOLOv3 has memorized the features from HE images and could not perform well on
IHC images.

Another aspect that could have limited our results are the size of the dataset. As deep
learning techniques rely heavily on a large dataset, the HistoBC-HER2 had only images from
140 patients, which is small compared to other datasets used in the training of deep neural
networks. We tried to improve the performance using data augmentation hyper-parameters on
the network configuration. However, since the data is randomly generated, it is not possible to be
sure how many images were actually used. It is important to emphasize that for a neural network
an augmented image is different from the original, e.g. the original and its flipped image are
considered 2 different images.

Finally, AlexeyAB has stated that there must be at least 1 example of each object in
the training set about the same shape, relative size, angle of rotation, tilt, illumination [2].
Additionally, AlexeyAB also recommended having images with objects at different scales,
rotations, lightings, from different sides, on different backgrounds. Consequently, the training set
should preferably have 2000 different images for each class or more, and the network should
train 2000 ∗ classes iterations or more.

In our problem, we aimed to label correctly the tissue samples as test, thus we just
considered test class. However, considering that usually classes are defined as groups with similar
features within the same class, it might be necessary to split the images according to similarities
between them and retrain the network with enough examples of each class as recommended.

Nonetheless, it would be necessary to further categorize each tissue sample in one of
the most common classes. This approach would be infeasible for the present work, due to the
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unique appearance of each tissue sample, it is nearly impossible to categorize every sample. Also,
the HistoBC-HER2 dataset used in this work does not have enough examples for this approach.
Lastly, the manual categorization task is time demanding and beyond the scope of this work.



42

6 CONCLUSION

The presented work aimed to detect test tissue samples on histopathological images.
This step would improve the accuracy of HER-2 computer-aided systems by avoiding processing
on empty spaces. Moreover, the method would reduce user dependency for a manual ROI
detection.

For this work, we created ground truth annotations for tissue sample detection task on
HistoBC-HER2 dataset. These annotations were analyzed by Cordeiro, therefore is going to
extend the dataset for the detection task.

We also employed the YOLO network, which is the state-of-art in object detection task.
The network was trained first to learn the general features for histopathological images, then it
was retrained to learn features from HE images of each patient and tested on IHC images of that
same patient. Our method achieved an average IoU score of 0.2094 at the standard deviation of
0.2522.

Finally, we conclude that the test sample detection on IHC slides is not a trivial task. It
is necessary a combination of IHC color and texture information, besides shape features that
were extracted from the HE slides. We can attribute the difficulty of this task due to the variety
of sample shapes, color, texture, contours and staining quality.

6.1 FUTURE WORK

Improving the accuracy of a deep neural network is a complex task since there are many variables
that can be adjusted which can affect our result. Below we cite some future work that can be
done for improving the results of this approach.

• Classify tissue samples in further classes accordingly to their features;

• Train with larger datasets to increase the data volume and improve IoU rates. The
dataset should have at least 2000 examples of each class varying in size, illumination,
rotation, and scales;

• Train using patches of the input to decrease the resize done by the YOLO, therefore
decreasing also the information loss and increasing the data;

• Use another neural network or other feature extractors to compose a more complex
feature vector;

• Change hyper-parameters, e.g. try different values for learning rate.
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